Cargando…
Dictyophora Polysaccharide Attenuates As-Mediated PINK1/Parkin Pathway-Induced Mitophagy in L-02 Cell through Scavenging ROS
Arsenic (As) is common in the human living environment and a certain amount of exposure to As can lead to liver damage; this toxic effect has been proved to be closely related to intracellular PINK1/Parkin pathway-mediated mitophagy. Dictyophora is an edible fungus that extracts polysaccharides with...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099742/ https://www.ncbi.nlm.nih.gov/pubmed/35566158 http://dx.doi.org/10.3390/molecules27092806 |
Sumario: | Arsenic (As) is common in the human living environment and a certain amount of exposure to As can lead to liver damage; this toxic effect has been proved to be closely related to intracellular PINK1/Parkin pathway-mediated mitophagy. Dictyophora is an edible fungus that extracts polysaccharides with antioxidant and hepatoprotective effects. In the present study, we demonstrated that As induced the onset of mitophagy in hepatocytes by stimulating cellular production of ROS to activate PINK1/Parkin, and the extent of damage increased with increased As-induced toxicity. Dictyophora polysaccharide (DIP) has the ability to scavenge intracellular ROS, which can inhibit oxidative stress injury and inhibit the PINK/Parkin pathway through its receptors or efficacious proteins, thus preventing mitochondrial autophagy and alleviating the hepatotoxicity of As. In conclusion, our results indicate that DIP can reduce As-induced PINK1/Parkin pathway-mediated hepatic mitophagy through scavenging ROS and exert hepatoprotective effects, providing experimental data and theoretical basis for the development of medicinal value of Dictyophora as a dual-use food and medicinal fungus. |
---|