Cargando…

An Intelligent Traffic Surveillance System Using Integrated Wireless Sensor Network and Improved Phase Timing Optimization

The transportation industry is crucial to the realization of a smart city. However, the current growth in vehicle numbers is not being matched by an increase in road capacity. Congestion may boost the number of accidents, harm economic growth, and result in higher gas emissions. Currently, traffic c...

Descripción completa

Detalles Bibliográficos
Autores principales: Naveed, Quadri Noorulhasan, Alqahtani, Hamed, Khan, Riaz Ullah, Almakdi, Sultan, Alshehri, Mohammed, Abdul Rasheed, Mohammed Aref
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099745/
https://www.ncbi.nlm.nih.gov/pubmed/35591023
http://dx.doi.org/10.3390/s22093333
Descripción
Sumario:The transportation industry is crucial to the realization of a smart city. However, the current growth in vehicle numbers is not being matched by an increase in road capacity. Congestion may boost the number of accidents, harm economic growth, and result in higher gas emissions. Currently, traffic congestion is seen as a severe threat to urban life. Suffering as a result of increased car traffic, insufficient infrastructure, and inefficient traffic management has exceeded the tolerance limit. Since route decisions are typically made in a short amount of time, the visualization of the data must be presented in a highly conceivable way. Also, the data generated by the transportation system face difficulties in processing and sometimes lack effective usage in certain fields. Hence, to overcome the challenges in computer vision, a novel computer vision-based traffic management system is proposed by integrating a wireless sensor network (WSN) and visual analytics framework. This research aimed to analyze average message delivery, average latency, average access, average energy consumption, and network performance. Wireless sensors are used in the study to collect road metrics, quantify them, and then rank them for entry. For optimization of the traffic data, improved phase timing optimization (IPTO) was used. The whole experimentation was carried out in a virtual environment. It was observed from the experimental results that the proposed approach outperformed other existing approaches.