Cargando…
Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells
The development and treatment of some diseases, such as large-area cerebral infarction, cerebral hemorrhage, brain tumor, and craniocerebral trauma, which may involve the injury of the dura mater, elicit the need to repair this membrane by dural grafts. However, common dural grafts tend to result in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099771/ https://www.ncbi.nlm.nih.gov/pubmed/35567051 http://dx.doi.org/10.3390/polym14091882 |
_version_ | 1784706688827260928 |
---|---|
author | Zhao, Zhiyuan Wu, Tong Cui, Yu Zhao, Rui Wan, Qi Xu, Rui |
author_facet | Zhao, Zhiyuan Wu, Tong Cui, Yu Zhao, Rui Wan, Qi Xu, Rui |
author_sort | Zhao, Zhiyuan |
collection | PubMed |
description | The development and treatment of some diseases, such as large-area cerebral infarction, cerebral hemorrhage, brain tumor, and craniocerebral trauma, which may involve the injury of the dura mater, elicit the need to repair this membrane by dural grafts. However, common dural grafts tend to result in dural adhesions and scar tissue and have no further neuroprotective effects. In order to reduce or avoid the complications of dural repair, we used PLGA, tetramethylpyrazine, and chitosan as raw materials to prepare a nanofibrous dura mater (NDM) with excellent biocompatibility and adequate mechanical characteristics, which can play a neuroprotective role and have an antifibrotic effect. We fabricated PLGA NDM by electrospinning, and then chitosan was grafted on the nanofibrous dura mater by the EDC-NHS cross-linking method to obtain PLGA/CS NDM. Then, we also prepared PLGA/TMP/CS NDM by coaxial electrospinning. Our study shows that the PLGA/TMP/CS NDM can inhibit the excessive proliferation of fibroblasts, as well as provide a sustained protective effect on the SH-SY5Y cells treated with oxygen–glucose deprivation/reperfusion (OGD/R). In conclusion, our study may provide a new alternative to dural grafts in undesirable cases of dural injuries. |
format | Online Article Text |
id | pubmed-9099771 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90997712022-05-14 Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells Zhao, Zhiyuan Wu, Tong Cui, Yu Zhao, Rui Wan, Qi Xu, Rui Polymers (Basel) Article The development and treatment of some diseases, such as large-area cerebral infarction, cerebral hemorrhage, brain tumor, and craniocerebral trauma, which may involve the injury of the dura mater, elicit the need to repair this membrane by dural grafts. However, common dural grafts tend to result in dural adhesions and scar tissue and have no further neuroprotective effects. In order to reduce or avoid the complications of dural repair, we used PLGA, tetramethylpyrazine, and chitosan as raw materials to prepare a nanofibrous dura mater (NDM) with excellent biocompatibility and adequate mechanical characteristics, which can play a neuroprotective role and have an antifibrotic effect. We fabricated PLGA NDM by electrospinning, and then chitosan was grafted on the nanofibrous dura mater by the EDC-NHS cross-linking method to obtain PLGA/CS NDM. Then, we also prepared PLGA/TMP/CS NDM by coaxial electrospinning. Our study shows that the PLGA/TMP/CS NDM can inhibit the excessive proliferation of fibroblasts, as well as provide a sustained protective effect on the SH-SY5Y cells treated with oxygen–glucose deprivation/reperfusion (OGD/R). In conclusion, our study may provide a new alternative to dural grafts in undesirable cases of dural injuries. MDPI 2022-05-05 /pmc/articles/PMC9099771/ /pubmed/35567051 http://dx.doi.org/10.3390/polym14091882 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Zhiyuan Wu, Tong Cui, Yu Zhao, Rui Wan, Qi Xu, Rui Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells |
title | Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells |
title_full | Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells |
title_fullStr | Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells |
title_full_unstemmed | Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells |
title_short | Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells |
title_sort | design and fabrication of nanofibrous dura mater with antifibrosis and neuroprotection effects on sh-sy5y cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099771/ https://www.ncbi.nlm.nih.gov/pubmed/35567051 http://dx.doi.org/10.3390/polym14091882 |
work_keys_str_mv | AT zhaozhiyuan designandfabricationofnanofibrousduramaterwithantifibrosisandneuroprotectioneffectsonshsy5ycells AT wutong designandfabricationofnanofibrousduramaterwithantifibrosisandneuroprotectioneffectsonshsy5ycells AT cuiyu designandfabricationofnanofibrousduramaterwithantifibrosisandneuroprotectioneffectsonshsy5ycells AT zhaorui designandfabricationofnanofibrousduramaterwithantifibrosisandneuroprotectioneffectsonshsy5ycells AT wanqi designandfabricationofnanofibrousduramaterwithantifibrosisandneuroprotectioneffectsonshsy5ycells AT xurui designandfabricationofnanofibrousduramaterwithantifibrosisandneuroprotectioneffectsonshsy5ycells |