Cargando…

Microstructure, Properties, and Numerical Simulation of Semi-Solid Aluminum Alloy under Planetary Stirring Process

In order to solve the problem of insufficient convective heat transfer of uniaxial stirred melt, the temperature field and shear rate of melt under planetary stirring were studied based on CFD simulation. The microstructure and properties of this technology were also experimentally studied. The resu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Bing, Qiu, Zhiyan, Chen, Keping, Xu, Chun, Wang, Zhanyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099861/
https://www.ncbi.nlm.nih.gov/pubmed/35591344
http://dx.doi.org/10.3390/ma15093009
Descripción
Sumario:In order to solve the problem of insufficient convective heat transfer of uniaxial stirred melt, the temperature field and shear rate of melt under planetary stirring were studied based on CFD simulation. The microstructure and properties of this technology were also experimentally studied. The results show that compared with the uniaxial stirring semi-solid technology, the convective heat transfer ability of aluminum alloy, semi-solid slurry in planetary stirring mode is stronger. In addition, its temperature field can be reduced to the semi-solid range faster and more evenly, which is conducive to a large number of nucleation and improves the nucleation rate. The temperature difference of the whole melt is small, so the preferred direction growth and uniform growth of dendrites are avoided, and the morphology is improved. Properly increasing the revolution and rotation speed of the stirring shaft can refine the grains of semi-solid aluminum alloy parts, improve the grain morphology, and improve the tensile strength. The planetary stirring semi-solid process is very suitable for rheological high-pressure casting.