Cargando…
Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted Pvc Membrane Materials under Multistage Cyclic Loading
In order to study the mechanical behavior and energy dissipation of architectural membrane materials under multistage cyclic loading, the deformation behavior, energy dissipation, and damage characteristics of four kinds of warp-knitted and woven polyvinyl chloride (PVC) membrane materials were anal...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099895/ https://www.ncbi.nlm.nih.gov/pubmed/35566833 http://dx.doi.org/10.3390/polym14091666 |
_version_ | 1784706719472943104 |
---|---|
author | Guo, Shanshan Wang, Linlin Shao, Guangwei Shao, Huiqi Jiang, Jinhua Chen, Nanliang |
author_facet | Guo, Shanshan Wang, Linlin Shao, Guangwei Shao, Huiqi Jiang, Jinhua Chen, Nanliang |
author_sort | Guo, Shanshan |
collection | PubMed |
description | In order to study the mechanical behavior and energy dissipation of architectural membrane materials under multistage cyclic loading, the deformation behavior, energy dissipation, and damage characteristics of four kinds of warp-knitted and woven polyvinyl chloride (PVC) membrane materials were analyzed using multistage cyclic loading experiments. The results show that, compared with the uniaxial tensile strength, the peak values of the cyclic loading and unloading of the four material samples are lower in the warp direction but higher in the fill (weft) direction. Under multistage cyclic loading, the loading and unloading moduli of the warp knitting membrane increase with the increase in fabric density. At the same fabric density, the loading modulus and the unloading modulus are smaller than those of the warp knitting material. The total absorbed strain energy, elastic strain energy, and dissipation energy of the fill samples are higher than those of the warp samples at a low load level but lower than those at a high load level. PVC membrane materials’ use strength should be controlled below a 15% stress level under long-term external force loading. In the cyclic loading process, the four PVC membrane materials are viscoelastic–plastic, so it is reasonable to define the damage variable based on the accumulation of plastic deformation. |
format | Online Article Text |
id | pubmed-9099895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90998952022-05-14 Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted Pvc Membrane Materials under Multistage Cyclic Loading Guo, Shanshan Wang, Linlin Shao, Guangwei Shao, Huiqi Jiang, Jinhua Chen, Nanliang Polymers (Basel) Article In order to study the mechanical behavior and energy dissipation of architectural membrane materials under multistage cyclic loading, the deformation behavior, energy dissipation, and damage characteristics of four kinds of warp-knitted and woven polyvinyl chloride (PVC) membrane materials were analyzed using multistage cyclic loading experiments. The results show that, compared with the uniaxial tensile strength, the peak values of the cyclic loading and unloading of the four material samples are lower in the warp direction but higher in the fill (weft) direction. Under multistage cyclic loading, the loading and unloading moduli of the warp knitting membrane increase with the increase in fabric density. At the same fabric density, the loading modulus and the unloading modulus are smaller than those of the warp knitting material. The total absorbed strain energy, elastic strain energy, and dissipation energy of the fill samples are higher than those of the warp samples at a low load level but lower than those at a high load level. PVC membrane materials’ use strength should be controlled below a 15% stress level under long-term external force loading. In the cyclic loading process, the four PVC membrane materials are viscoelastic–plastic, so it is reasonable to define the damage variable based on the accumulation of plastic deformation. MDPI 2022-04-20 /pmc/articles/PMC9099895/ /pubmed/35566833 http://dx.doi.org/10.3390/polym14091666 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Shanshan Wang, Linlin Shao, Guangwei Shao, Huiqi Jiang, Jinhua Chen, Nanliang Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted Pvc Membrane Materials under Multistage Cyclic Loading |
title | Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted Pvc Membrane Materials under Multistage Cyclic Loading |
title_full | Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted Pvc Membrane Materials under Multistage Cyclic Loading |
title_fullStr | Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted Pvc Membrane Materials under Multistage Cyclic Loading |
title_full_unstemmed | Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted Pvc Membrane Materials under Multistage Cyclic Loading |
title_short | Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted Pvc Membrane Materials under Multistage Cyclic Loading |
title_sort | mechanical behavior and energy dissipation of woven and warp-knitted pvc membrane materials under multistage cyclic loading |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099895/ https://www.ncbi.nlm.nih.gov/pubmed/35566833 http://dx.doi.org/10.3390/polym14091666 |
work_keys_str_mv | AT guoshanshan mechanicalbehaviorandenergydissipationofwovenandwarpknittedpvcmembranematerialsundermultistagecyclicloading AT wanglinlin mechanicalbehaviorandenergydissipationofwovenandwarpknittedpvcmembranematerialsundermultistagecyclicloading AT shaoguangwei mechanicalbehaviorandenergydissipationofwovenandwarpknittedpvcmembranematerialsundermultistagecyclicloading AT shaohuiqi mechanicalbehaviorandenergydissipationofwovenandwarpknittedpvcmembranematerialsundermultistagecyclicloading AT jiangjinhua mechanicalbehaviorandenergydissipationofwovenandwarpknittedpvcmembranematerialsundermultistagecyclicloading AT chennanliang mechanicalbehaviorandenergydissipationofwovenandwarpknittedpvcmembranematerialsundermultistagecyclicloading |