Cargando…
Identifying Protein Features and Pathways Responsible for Toxicity Using Machine Learning and Tox21: Implications for Predictive Toxicology
Humans are exposed to numerous compounds daily, some of which have adverse effects on health. Computational approaches for modeling toxicological data in conjunction with machine learning algorithms have gained popularity over the last few years. Machine learning approaches have been used to predict...
Autores principales: | Moukheiber, Lama, Mangione, William, Moukheiber, Mira, Maleki, Saeed, Falls, Zackary, Gao, Mingchen, Samudrala, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099959/ https://www.ncbi.nlm.nih.gov/pubmed/35566372 http://dx.doi.org/10.3390/molecules27093021 |
Ejemplares similares
-
Optimal COVID-19 therapeutic candidate discovery using the CANDO platform
por: Mangione, William, et al.
Publicado: (2022) -
Effective holistic characterization of small molecule effects using heterogeneous biological networks
por: Mangione, William, et al.
Publicado: (2023) -
Exploration of interaction scoring criteria in the CANDO platform
por: Falls, Zackary, et al.
Publicado: (2019) -
A Deep-Learning Proteomic-Scale Approach for Drug Design
por: Overhoff, Brennan, et al.
Publicado: (2021) -
Bias in artificial intelligence algorithms and recommendations for mitigation
por: Nazer, Lama H., et al.
Publicado: (2023)