Cargando…
Influence of Annealing Treatment on Microstructure and Properties of Ni-Rich NiTi Alloy Coating Prepared by Laser Cladding
NiTi alloys are widely known for their shape memory effect and super-elasticity. In this study, the laser cladding method was applied to prepare Ni-rich NiTi alloy coatings on 316L stainless steel substrate. The microstructure, phase composition, element distribution and phase transformation behavio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099964/ https://www.ncbi.nlm.nih.gov/pubmed/35591631 http://dx.doi.org/10.3390/ma15093298 |
Sumario: | NiTi alloys are widely known for their shape memory effect and super-elasticity. In this study, the laser cladding method was applied to prepare Ni-rich NiTi alloy coatings on 316L stainless steel substrate. The microstructure, phase composition, element distribution and phase transformation behavior of the coatings were investigated in as-fabricated and annealing-treated states. The results indicated that the recrystallized microstructure obtained and the content of Ni(3)Ti and Ti(2)Ni phases increased significantly with a rising annealing temperature. Annealing treatment also induced a decrease in the phase-transition enthalpy and a rise in the transformation temperature, even though no obvious martensite transformation was observed. This was suppressed due to the Fe element diffused from the substrate and was probably retarded by the mounting metallic compounds formed during annealing as well. The mechanical properties have also improved obviously; coatings annealed under 850 °C exhibited the highest microhardness of 839 HV, and the wear resistance of the coatings after annealing was enhanced with an 11% average wear mass loss reduction. |
---|