Cargando…
Modeling and Fault Detection of Brushless Direct Current Motor by Deep Learning Sensor Data Fusion
Only with new sensor concepts in a network, which go far beyond what the current state-of-the-art can offer, can current and future requirements for flexibility, safety, and security be met. The combination of data from many sensors allows a richer representation of the observed phenomenon, e.g., sy...
Autores principales: | Suawa, Priscile, Meisel, Tenia, Jongmanns, Marcel, Huebner, Michael, Reichenbach, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099980/ https://www.ncbi.nlm.nih.gov/pubmed/35591209 http://dx.doi.org/10.3390/s22093516 |
Ejemplares similares
-
Fault-Diagnosis and Fault-Recovery System of Hall Sensors in Brushless DC Motor Based on Neural Networks †
por: Chu, Kenny Sau Kang, et al.
Publicado: (2023) -
Control of Brushless Direct-Current Motors Using Bioelectric EMG Signals
por: Glowinski, Sebastian, et al.
Publicado: (2022) -
Contactless Rotor Ground Fault Detection Method for Brushless Synchronous Machines Based on an AC/DC Rotating Current Sensor
por: Pardo-Vicente, Miguel A., et al.
Publicado: (2023) -
Accurate Measurements of the Rotational Velocities of Brushless Direct-Current Motors by Using an Ultrasensitive Magnetoimpedance Sensing System
por: Wang, Tao, et al.
Publicado: (2019) -
A Study on Optimization of Noise Reduction of Powered Vehicle Seat Movement Using Brushless Direct-Current Motor
por: Lee, Hyunju, et al.
Publicado: (2023)