Cargando…
DACFL: Dynamic Average Consensus-Based Federated Learning in Decentralized Sensors Network
Federated Learning (FL) is a privacy-preserving way to utilize the sensitive data generated by smart sensors of user devices, where a central parameter server (PS) coordinates multiple user devices to train a global model. However, relying on centralized topology poses challenges when applying FL in...
Autores principales: | Chen, Zhikun, Li, Daofeng, Zhu, Jinkang, Zhang, Sihai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100108/ https://www.ncbi.nlm.nih.gov/pubmed/35591008 http://dx.doi.org/10.3390/s22093317 |
Ejemplares similares
-
Decentralized Federated Learning for Healthcare Networks: A Case Study on Tumor Segmentation
por: Camajori Tedeschini, Bernardo, et al.
Publicado: (2022) -
Detecting model misconducts in decentralized healthcare federated learning
por: Kuo, Tsung-Ting, et al.
Publicado: (2021) -
Decentralized federated learning through proxy model sharing
por: Kalra, Shivam, et al.
Publicado: (2023) -
Decentralized governance and artificial intelligence policy with blockchain-based voting in federated learning
por: Lee, C. Alisdair, et al.
Publicado: (2023) -
Consensus-based clustering and data aggregation in decentralized network of multi-agent systems
por: Damanik, Joshua Julian, et al.
Publicado: (2023)