Cargando…
UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning
Drug-target interaction (DTI) prediction through in vitro methods is expensive and time-consuming. On the other hand, computational methods can save time and money while enhancing drug discovery efficiency. Most of the computational methods frame DTI prediction as a binary classification task. One i...
Autores principales: | Tayebi, Aida, Yousefi, Niloofar, Yazdani-Jahromi, Mehdi, Kolanthai, Elayaraja, Neal, Craig J., Seal, Sudipta, Garibay, Ozlem Ozmen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100109/ https://www.ncbi.nlm.nih.gov/pubmed/35566330 http://dx.doi.org/10.3390/molecules27092980 |
Ejemplares similares
-
AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification
por: Yazdani-Jahromi, Mehdi, et al.
Publicado: (2022) -
BindingSite-AugmentedDTA: enabling a next-generation pipeline for interpretable prediction models in drug repurposing
por: Yousefi, Niloofar, et al.
Publicado: (2023) -
Engineered Faceted Cerium Oxide Nanoparticles for Therapeutic miRNA Delivery
por: Fu, Yifei, et al.
Publicado: (2022) -
Cerium Oxide Nanoparticles Conjugated with Tannic Acid Prevent UVB-Induced Oxidative Stress in Fibroblasts: Evidence of a Promising Anti-Photodamage Agent
por: Daré, Regina G., et al.
Publicado: (2023) -
Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment
por: Babu, Balaashwin, et al.
Publicado: (2023)