Cargando…
Deep Cryogenic Treatment Characteristics of a Deformation-Processed Cu-Ni-Co-Si Alloy
This paper investigated the influence of deep cryogenic treatments (DCT) on the tensile strength, elongation to fracture and conductivity of a deformation-processed Cu-Ni-Co-Si alloy. The tensile properties were measured using a mechanical testing machine. The conductivity was evaluated using a low-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100281/ https://www.ncbi.nlm.nih.gov/pubmed/35591386 http://dx.doi.org/10.3390/ma15093051 |
Sumario: | This paper investigated the influence of deep cryogenic treatments (DCT) on the tensile strength, elongation to fracture and conductivity of a deformation-processed Cu-Ni-Co-Si alloy. The tensile properties were measured using a mechanical testing machine. The conductivity was evaluated using a low-resistance tester. The microstructure and precipitated phases were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), an energy dispersive spectrometer (EDS) and an X-ray diffractometer (XRD). The tensile strength, elongation to fracture and conductivity of the Cu-1.34Ni-1.02Co-0.61Si alloy before and after cold rolling at 47% reduction increased with increasing DCT time and tended to be stable at about 36 h. The microstructure became more uniform after the DCT. The grain size was refined and was smallest after DCT for 48 h. The DCT promoted the precipitation of the solid solution elements Ni, Co and Si from the Cu matrix to form many fine and evenly distributed 20–70 nm spherical second-phase particles in the grains and grain boundaries. |
---|