Cargando…

Global prediction model for COVID-19 pandemic with the characteristics of the multiple peaks and local fluctuations

BACKGROUND: With the spread of COVID-19, the time-series prediction of COVID-19 has become a research hotspot. Unlike previous epidemics, COVID-19 has a new pattern of long-time series, large fluctuations, and multiple peaks. Traditional dynamical models are limited to curves with short-time series,...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Haoran, Cao, Wen, Tong, Xiaochong, Yao, Yunxing, Peng, Feilin, Zhu, Jingwen, Tian, Yuzhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100309/
https://www.ncbi.nlm.nih.gov/pubmed/35562672
http://dx.doi.org/10.1186/s12874-022-01604-x
Descripción
Sumario:BACKGROUND: With the spread of COVID-19, the time-series prediction of COVID-19 has become a research hotspot. Unlike previous epidemics, COVID-19 has a new pattern of long-time series, large fluctuations, and multiple peaks. Traditional dynamical models are limited to curves with short-time series, single peak, smoothness, and symmetry. Secondly, most of these models have unknown parameters, which bring greater ambiguity and uncertainty. There are still major shortcomings in the integration of multiple factors, such as human interventions, environmental factors, and transmission mechanisms. METHODS: A dynamical model with only infected humans and removed humans was established. Then the process of COVID-19 spread was segmented using a local smoother. The change of infection rate at different stages was quantified using the continuous and periodic Logistic growth function to quantitatively describe the comprehensive effects of natural and human factors. Then, a non-linear variable and NO(2) concentrations were introduced to qualify the number of people who have been prevented from infection through human interventions. RESULTS: The experiments and analysis showed the R(2) of fitting for the US, UK, India, Brazil, Russia, and Germany was 0.841, 0.977, 0.974, 0.659, 0.992, and 0.753, respectively. The prediction accuracy of the US, UK, India, Brazil, Russia, and Germany in October was 0.331, 0.127, 0.112, 0.376, 0.043, and 0.445, respectively. CONCLUSION: The model can not only better describe the effects of human interventions but also better simulate the temporal evolution of COVID-19 with local fluctuations and multiple peaks, which can provide valuable assistant decision-making information. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-022-01604-x.