Cargando…

Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study

Blood biomarkers for dementia have the potential to identify preclinical disease and improve participant selection for clinical trials. Machine learning is an efficient analytical strategy to simultaneously identify multiple candidate biomarkers for dementia. We aimed to identify important candidate...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Honghuang, Himali, Jayandra J., Satizabal, Claudia L., Beiser, Alexa S., Levy, Daniel, Benjamin, Emelia J., Gonzales, Mitzi M., Ghosh, Saptaparni, Vasan, Ramachandran S., Seshadri, Sudha, McGrath, Emer R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100323/
https://www.ncbi.nlm.nih.gov/pubmed/35563811
http://dx.doi.org/10.3390/cells11091506
_version_ 1784706824291745792
author Lin, Honghuang
Himali, Jayandra J.
Satizabal, Claudia L.
Beiser, Alexa S.
Levy, Daniel
Benjamin, Emelia J.
Gonzales, Mitzi M.
Ghosh, Saptaparni
Vasan, Ramachandran S.
Seshadri, Sudha
McGrath, Emer R.
author_facet Lin, Honghuang
Himali, Jayandra J.
Satizabal, Claudia L.
Beiser, Alexa S.
Levy, Daniel
Benjamin, Emelia J.
Gonzales, Mitzi M.
Ghosh, Saptaparni
Vasan, Ramachandran S.
Seshadri, Sudha
McGrath, Emer R.
author_sort Lin, Honghuang
collection PubMed
description Blood biomarkers for dementia have the potential to identify preclinical disease and improve participant selection for clinical trials. Machine learning is an efficient analytical strategy to simultaneously identify multiple candidate biomarkers for dementia. We aimed to identify important candidate blood biomarkers for dementia using three machine learning models. We included 1642 (mean 69 ± 6 yr, 53% women) dementia-free Framingham Offspring Cohort participants attending examination, 7 who had available blood biomarker data. We developed three machine learning models, support vector machine (SVM), eXtreme gradient boosting of decision trees (XGB), and artificial neural network (ANN), to identify candidate biomarkers for incident dementia. Over a mean 12 ± 5 yr follow-up, 243 (14.8%) participants developed dementia. In multivariable models including all 38 available biomarkers, the XGB model demonstrated the strongest predictive accuracy for incident dementia (AUC 0.74 ± 0.01), followed by ANN (AUC 0.72 ± 0.01), and SVM (AUC 0.69 ± 0.01). Stepwise feature elimination by random sampling identified a subset of the nine most highly informative biomarkers. Machine learning models confined to these nine biomarkers showed improved model predictive accuracy for dementia (XGB, AUC 0.76 ± 0.01; ANN, AUC 0.75 ± 0.004; SVM, AUC 0.73 ± 0.01). A parsimonious panel of nine candidate biomarkers were identified which showed moderately good predictive accuracy for incident dementia, although our results require external validation.
format Online
Article
Text
id pubmed-9100323
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91003232022-05-14 Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study Lin, Honghuang Himali, Jayandra J. Satizabal, Claudia L. Beiser, Alexa S. Levy, Daniel Benjamin, Emelia J. Gonzales, Mitzi M. Ghosh, Saptaparni Vasan, Ramachandran S. Seshadri, Sudha McGrath, Emer R. Cells Article Blood biomarkers for dementia have the potential to identify preclinical disease and improve participant selection for clinical trials. Machine learning is an efficient analytical strategy to simultaneously identify multiple candidate biomarkers for dementia. We aimed to identify important candidate blood biomarkers for dementia using three machine learning models. We included 1642 (mean 69 ± 6 yr, 53% women) dementia-free Framingham Offspring Cohort participants attending examination, 7 who had available blood biomarker data. We developed three machine learning models, support vector machine (SVM), eXtreme gradient boosting of decision trees (XGB), and artificial neural network (ANN), to identify candidate biomarkers for incident dementia. Over a mean 12 ± 5 yr follow-up, 243 (14.8%) participants developed dementia. In multivariable models including all 38 available biomarkers, the XGB model demonstrated the strongest predictive accuracy for incident dementia (AUC 0.74 ± 0.01), followed by ANN (AUC 0.72 ± 0.01), and SVM (AUC 0.69 ± 0.01). Stepwise feature elimination by random sampling identified a subset of the nine most highly informative biomarkers. Machine learning models confined to these nine biomarkers showed improved model predictive accuracy for dementia (XGB, AUC 0.76 ± 0.01; ANN, AUC 0.75 ± 0.004; SVM, AUC 0.73 ± 0.01). A parsimonious panel of nine candidate biomarkers were identified which showed moderately good predictive accuracy for incident dementia, although our results require external validation. MDPI 2022-04-30 /pmc/articles/PMC9100323/ /pubmed/35563811 http://dx.doi.org/10.3390/cells11091506 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lin, Honghuang
Himali, Jayandra J.
Satizabal, Claudia L.
Beiser, Alexa S.
Levy, Daniel
Benjamin, Emelia J.
Gonzales, Mitzi M.
Ghosh, Saptaparni
Vasan, Ramachandran S.
Seshadri, Sudha
McGrath, Emer R.
Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
title Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
title_full Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
title_fullStr Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
title_full_unstemmed Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
title_short Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
title_sort identifying blood biomarkers for dementia using machine learning methods in the framingham heart study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100323/
https://www.ncbi.nlm.nih.gov/pubmed/35563811
http://dx.doi.org/10.3390/cells11091506
work_keys_str_mv AT linhonghuang identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT himalijayandraj identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT satizabalclaudial identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT beiseralexas identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT levydaniel identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT benjaminemeliaj identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT gonzalesmitzim identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT ghoshsaptaparni identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT vasanramachandrans identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT seshadrisudha identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy
AT mcgrathemerr identifyingbloodbiomarkersfordementiausingmachinelearningmethodsintheframinghamheartstudy