Cargando…
Identifying Blood Biomarkers for Dementia Using Machine Learning Methods in the Framingham Heart Study
Blood biomarkers for dementia have the potential to identify preclinical disease and improve participant selection for clinical trials. Machine learning is an efficient analytical strategy to simultaneously identify multiple candidate biomarkers for dementia. We aimed to identify important candidate...
Autores principales: | Lin, Honghuang, Himali, Jayandra J., Satizabal, Claudia L., Beiser, Alexa S., Levy, Daniel, Benjamin, Emelia J., Gonzales, Mitzi M., Ghosh, Saptaparni, Vasan, Ramachandran S., Seshadri, Sudha, McGrath, Emer R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100323/ https://www.ncbi.nlm.nih.gov/pubmed/35563811 http://dx.doi.org/10.3390/cells11091506 |
Ejemplares similares
-
Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study
por: McGrath, Emer R., et al.
Publicado: (2019) -
Circulating IGFBP‐2: a novel biomarker for incident dementia
por: McGrath, Emer R., et al.
Publicado: (2019) -
Overweight, Obesity, and Survival After Stroke in the Framingham Heart Study
por: Aparicio, Hugo J., et al.
Publicado: (2017) -
Growth Differentiation Factor 15 and NT‐proBNP as Blood‐Based Markers of Vascular Brain Injury and Dementia
por: McGrath, Emer R., et al.
Publicado: (2020) -
Self-Reported Physical Activity and Relations to Growth and Neurotrophic Factors in Diabetes Mellitus: The Framingham Offspring Study
por: Spartano, Nicole L., et al.
Publicado: (2019)