Cargando…
Electrocardiogram Biometrics Using Transformer’s Self-Attention Mechanism for Sequence Pair Feature Extractor and Flexible Enrollment Scope Identification
The existing electrocardiogram (ECG) biometrics do not perform well when ECG changes after the enrollment phase because the feature extraction is not able to relate ECG collected during enrollment and ECG collected during classification. In this research, we propose the sequence pair feature extract...
Autores principales: | Chee, Kai Jye, Ramli, Dzati Athiar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100332/ https://www.ncbi.nlm.nih.gov/pubmed/35591136 http://dx.doi.org/10.3390/s22093446 |
Ejemplares similares
-
Sparse Component Analysis (SCA) Based on Adaptive Time—Frequency Thresholding for Underdetermined Blind Source Separation (UBSS)
por: Hassan, Norsalina, et al.
Publicado: (2023) -
A Robust and Fast Computation Touchless Palm Print Recognition System Using LHEAT and the IFkNCN Classifier
por: Jaafar, Haryati, et al.
Publicado: (2015) -
A CNN based Handwritten Numeral Recognition Model for Four Arithmetic Operations
por: ShanWei, Chen, et al.
Publicado: (2021) -
Electrocardiogram-Based Biometric Identification Using Mixed Feature Extraction and Sparse Representation
por: Zhang, Xu, et al.
Publicado: (2023) -
On biometric systems: electrocardiogram Gaussianity and data synthesis
por: Louis, Wael, et al.
Publicado: (2017)