Cargando…
Wavelet-Based Fractal Analysis of rs-fMRI for Classification of Alzheimer’s Disease
The resting-state functional magnetic resonance imaging (rs-fMRI) modality has gained widespread acceptance as a promising method for analyzing a variety of neurological and psychiatric diseases. It is established that resting-state neuroimaging data exhibit fractal behavior, manifested in the form...
Autores principales: | Sadiq, Alishba, Yahya, Norashikin, Tang, Tong Boon, Hashim, Hilwati, Naseem, Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100383/ https://www.ncbi.nlm.nih.gov/pubmed/35590793 http://dx.doi.org/10.3390/s22093102 |
Ejemplares similares
-
Classification of Alzheimer’s Progression Using fMRI Data
por: Noh, Ju-Hyeon, et al.
Publicado: (2023) -
Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network
por: Al-Hiyali, Mohammed Isam, et al.
Publicado: (2021) -
Fractal functions, fractal surfaces, and wavelets
por: Massopust, Peter R
Publicado: (2016) -
A Tensor-Based Framework for rs-fMRI Classification and Functional Connectivity Construction
por: Noroozi, Ali, et al.
Publicado: (2020) -
The Application of rs-fMRI in Vascular Cognitive Impairment
por: Wang, Ran, et al.
Publicado: (2020)