Cargando…

Novel Inhibitors of 2′-O-Methyltransferase of the SARS-CoV-2 Coronavirus

The COVID-19 pandemic is still affecting many people worldwide and causing a heavy burden to global health. To eliminate the disease, SARS-CoV-2, the virus responsible for the pandemic, can be targeted in several ways. One of them is to inhibit the 2′-O-methyltransferase (nsp16) enzyme that is cruci...

Descripción completa

Detalles Bibliográficos
Autores principales: Sulimov, Alexey, Kutov, Danil, Ilin, Ivan, Xiao, Yibei, Jiang, Sheng, Sulimov, Vladimir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100384/
https://www.ncbi.nlm.nih.gov/pubmed/35566072
http://dx.doi.org/10.3390/molecules27092721
Descripción
Sumario:The COVID-19 pandemic is still affecting many people worldwide and causing a heavy burden to global health. To eliminate the disease, SARS-CoV-2, the virus responsible for the pandemic, can be targeted in several ways. One of them is to inhibit the 2′-O-methyltransferase (nsp16) enzyme that is crucial for effective translation of viral RNA and virus replication. For methylation of substrates, nsp16 utilizes S-adenosyl methionine (SAM). Binding of a small molecule in the protein site where SAM binds can disrupt the synthesis of viral proteins and, as a result, the replication of the virus. Here, we performed high-throughput docking into the SAM-binding site of nsp16 for almost 40 thousand structures, prepared for compounds from three libraries: Enamine Coronavirus Library, Enamine Nucleoside Mimetics Library, and Chemdiv Nucleoside Analogue Library. For the top scoring ligands, semi-empirical quantum-chemical calculations were performed, to better estimate protein–ligand binding enthalpy. Relying upon the calculated binding energies and predicted docking poses, we selected 21 compounds for experimental testing.