Cargando…
Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms
Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., blood glucose levels). This is particularly important for individuals who have diabetes mellitus (DM). Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger and extract a blo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100498/ https://www.ncbi.nlm.nih.gov/pubmed/35591223 http://dx.doi.org/10.3390/s22093534 |
_version_ | 1784706860059721728 |
---|---|
author | Bogue-Jimenez, Brian Huang, Xiaolei Powell, Douglas Doblas, Ana |
author_facet | Bogue-Jimenez, Brian Huang, Xiaolei Powell, Douglas Doblas, Ana |
author_sort | Bogue-Jimenez, Brian |
collection | PubMed |
description | Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., blood glucose levels). This is particularly important for individuals who have diabetes mellitus (DM). Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger and extract a blood drop to measure the blood glucose based on chemical reactions with the blood. Unlike traditional glucometer devices, noninvasive continuous glucose monitoring (NICGM) devices aim to solve these issues by consistently monitoring users’ blood glucose levels (BGLs) without invasively acquiring a sample. In this work, we investigated the feasibility of a novel approach to NICGM using multiple off-the-shelf wearable sensors and learning-based models (i.e., machine learning) to predict blood glucose. Two datasets were used for this study: (1) the OhioT1DM dataset, provided by the Ohio University; and (2) the UofM dataset, created by our research team. The UofM dataset consists of fourteen features provided by six sensors for studying possible relationships between glucose and noninvasive biometric measurements. Both datasets are passed through a machine learning (ML) pipeline that tests linear and nonlinear models to predict BGLs from the set of noninvasive features. The results of this pilot study show that the combination of fourteen noninvasive biometric measurements with ML algorithms could lead to accurate BGL predictions within the clinical range; however, a larger dataset is required to make conclusions about the feasibility of this approach. |
format | Online Article Text |
id | pubmed-9100498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91004982022-05-14 Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms Bogue-Jimenez, Brian Huang, Xiaolei Powell, Douglas Doblas, Ana Sensors (Basel) Article Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., blood glucose levels). This is particularly important for individuals who have diabetes mellitus (DM). Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger and extract a blood drop to measure the blood glucose based on chemical reactions with the blood. Unlike traditional glucometer devices, noninvasive continuous glucose monitoring (NICGM) devices aim to solve these issues by consistently monitoring users’ blood glucose levels (BGLs) without invasively acquiring a sample. In this work, we investigated the feasibility of a novel approach to NICGM using multiple off-the-shelf wearable sensors and learning-based models (i.e., machine learning) to predict blood glucose. Two datasets were used for this study: (1) the OhioT1DM dataset, provided by the Ohio University; and (2) the UofM dataset, created by our research team. The UofM dataset consists of fourteen features provided by six sensors for studying possible relationships between glucose and noninvasive biometric measurements. Both datasets are passed through a machine learning (ML) pipeline that tests linear and nonlinear models to predict BGLs from the set of noninvasive features. The results of this pilot study show that the combination of fourteen noninvasive biometric measurements with ML algorithms could lead to accurate BGL predictions within the clinical range; however, a larger dataset is required to make conclusions about the feasibility of this approach. MDPI 2022-05-06 /pmc/articles/PMC9100498/ /pubmed/35591223 http://dx.doi.org/10.3390/s22093534 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bogue-Jimenez, Brian Huang, Xiaolei Powell, Douglas Doblas, Ana Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms |
title | Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms |
title_full | Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms |
title_fullStr | Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms |
title_full_unstemmed | Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms |
title_short | Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms |
title_sort | selection of noninvasive features in wrist-based wearable sensors to predict blood glucose concentrations using machine learning algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100498/ https://www.ncbi.nlm.nih.gov/pubmed/35591223 http://dx.doi.org/10.3390/s22093534 |
work_keys_str_mv | AT boguejimenezbrian selectionofnoninvasivefeaturesinwristbasedwearablesensorstopredictbloodglucoseconcentrationsusingmachinelearningalgorithms AT huangxiaolei selectionofnoninvasivefeaturesinwristbasedwearablesensorstopredictbloodglucoseconcentrationsusingmachinelearningalgorithms AT powelldouglas selectionofnoninvasivefeaturesinwristbasedwearablesensorstopredictbloodglucoseconcentrationsusingmachinelearningalgorithms AT doblasana selectionofnoninvasivefeaturesinwristbasedwearablesensorstopredictbloodglucoseconcentrationsusingmachinelearningalgorithms |