Cargando…
Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms
Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., blood glucose levels). This is particularly important for individuals who have diabetes mellitus (DM). Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger and extract a blo...
Autores principales: | Bogue-Jimenez, Brian, Huang, Xiaolei, Powell, Douglas, Doblas, Ana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100498/ https://www.ncbi.nlm.nih.gov/pubmed/35591223 http://dx.doi.org/10.3390/s22093534 |
Ejemplares similares
-
Global Stress Detection Framework Combining a Reduced Set of HRV Features and Random Forest Model
por: Dahal, Kamana, et al.
Publicado: (2023) -
Application of a Machine Learning Algorithms in a Wrist-Wearable Sensor for Patient Health Monitoring during Autonomous Hospital Bed Transport
por: Tan, Yan Hao, et al.
Publicado: (2021) -
Wearable Noninvasive Glucose Sensor Based on Cu(x)O NFs/Cu NPs Nanocomposites
por: Yu, Zhipeng, et al.
Publicado: (2023) -
Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review
por: Kamišalić, Aida, et al.
Publicado: (2018) -
Assessment of the Potential of Wrist-Worn Wearable Sensors for Driver Drowsiness Detection
por: Kundinger, Thomas, et al.
Publicado: (2020)