Cargando…

Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins

SIMPLE SUMMARY: The objective of this project was to search for new dependencies in Ewing sarcoma, a deadly disease for which new therapeutic approaches are urgently needed. A pharmacological screening of off-patent approved drugs (FDA agency) and the investigation of downstream targets of EGR2 were...

Descripción completa

Detalles Bibliográficos
Autores principales: Buchou, Charlie, Laud-Duval, Karine, van der Ent, Wietske, Grossetête, Sandrine, Zaidi, Sakina, Gentric, Géraldine, Corbé, Maxime, Müller, Kévin, Del Nery, Elaine, Surdez, Didier, Delattre, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100622/
https://www.ncbi.nlm.nih.gov/pubmed/35565457
http://dx.doi.org/10.3390/cancers14092327
Descripción
Sumario:SIMPLE SUMMARY: The objective of this project was to search for new dependencies in Ewing sarcoma, a deadly disease for which new therapeutic approaches are urgently needed. A pharmacological screening of off-patent approved drugs (FDA agency) and the investigation of downstream targets of EGR2 were performed. The two approaches showed the MVA pathway as a major dependency in Ewing sarcoma and statin, an inhibitor of this pathway, as a potential new therapeutic agent for the treatment of Ewing sarcoma. ABSTRACT: Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease.