Cargando…
Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments
A key challenge for AI is to build embodied systems that operate in dynamically changing environments. Such systems must adapt to changing task contexts and learn continuously. Although standard deep learning systems achieve state of the art results on static benchmarks, they often struggle in dynam...
Autores principales: | Iyer, Abhiram, Grewal, Karan, Velu, Akash, Souza, Lucas Oliveira, Forest, Jeremy, Ahmad, Subutai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100780/ https://www.ncbi.nlm.nih.gov/pubmed/35574225 http://dx.doi.org/10.3389/fnbot.2022.846219 |
Ejemplares similares
-
Detecting Changes and Avoiding Catastrophic Forgetting in Dynamic Partially Observable Environments
por: Dick, Jeffery, et al.
Publicado: (2020) -
A Theory of How Columns in the Neocortex Enable Learning the Structure of the World
por: Hawkins, Jeff, et al.
Publicado: (2017) -
Rejuvenating the sun and avoiding other global catastrophes
por: Beech, Martin
Publicado: (2008) -
Catastrophe theory: predict and avoid personal disaster
por: Postle, Denis
Publicado: (1980) -
Steroid card: A simple practice to avoid catastrophe
por: Singh, Ashish, et al.
Publicado: (2011)