Cargando…
Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming
The purpose of this article is to demonstrate the potential of gene expression programming (GEP) in anticipating the compressive strength of circular CFRP confined concrete columns. A new GEP model has been developed based on a credible and extensive database of 828 data points to date. Numerous ana...
Autores principales: | Ilyas, Israr, Zafar, Adeel, Afzal, Muhammad Talal, Javed, Muhammad Faisal, Alrowais, Raid, Althoey, Fadi, Mohamed, Abdeliazim Mustafa, Mohamed, Abdullah, Vatin, Nikolai Ivanovich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100819/ https://www.ncbi.nlm.nih.gov/pubmed/35566957 http://dx.doi.org/10.3390/polym14091789 |
Ejemplares similares
-
Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
por: Ilyas, Israr, et al.
Publicado: (2021) -
Predicting the Lateral Load Carrying Capacity of Reinforced Concrete Rectangular Columns: Gene Expression Programming
por: Asghar, Raheel, et al.
Publicado: (2022) -
Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF
por: Nafees, Afnan, et al.
Publicado: (2022) -
Predicting the Ultimate Axial Capacity of Uniaxially Loaded CFST Columns Using Multiphysics Artificial Intelligence
por: Khan, Sangeen, et al.
Publicado: (2021) -
Axial Compressive Strength Models of Eccentrically-Loaded Rectangular Reinforced Concrete Columns Confined with FRP
por: Isleem, Haytham F., et al.
Publicado: (2021)