Cargando…

Aluminum Diethylphosphinate-Incorporated Flame-Retardant Polyacrylonitrile Separators for Safety of Lithium-Ion Batteries

Herein, we developed polyacrylonitrile (PAN)-based nanoporous composite membranes incorporating aluminum diethylphosphinate (ADEP) for use as a heat-resistant and flame-retardant separator in high-performance and safe lithium-ion batteries (LIBs). ADEP is phosphorus-rich, thermally stable, and flame...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Seok Hyeon, Jeong, Hwan Yeop, Kim, Tae Ho, Lee, Jang Yong, Hong, Sung Kwon, Hong, Young Taik, Choi, Jaewon, So, Soonyong, Yoon, Sang Jun, Yu, Duk Man
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100846/
https://www.ncbi.nlm.nih.gov/pubmed/35566819
http://dx.doi.org/10.3390/polym14091649
Descripción
Sumario:Herein, we developed polyacrylonitrile (PAN)-based nanoporous composite membranes incorporating aluminum diethylphosphinate (ADEP) for use as a heat-resistant and flame-retardant separator in high-performance and safe lithium-ion batteries (LIBs). ADEP is phosphorus-rich, thermally stable, and flame retardant, and it can effectively suppress the combustibility of PAN nanofibers. Nanofibrous membranes were obtained by electrospinning, and the content of ADEP varied from 0 to 20 wt%. From the vertical burning test, it was demonstrated that the flame retardancy of the composite membranes was enhanced when more than 5 wt% of ADEP was added to PAN, potentially increasing the safety level of LIBs. Moreover, the composite membrane showed higher ionic conductivity and electrolyte uptake (0.83 mS/cm and 137%) compared to those of commercial polypropylene (PP) membranes (Celgard 2400: 0.65 mS/cm and 63%), resulting from interconnected pores and the polar chemical composition in the composite membranes. In terms of battery performance, the composite membrane showed highly stable electrochemical and heat-resistant properties, including superior discharge capacity when compared to Celgard 2400, indicating that the PAN/ADEP composite membrane has the potential to be used as a heat-resistant and flame-retardant separator for safe and high-power LIBs.