Cargando…
Joint Optimization for Mobile Edge Computing-Enabled Blockchain Systems: A Deep Reinforcement Learning Approach
A mobile edge computing (MEC)-enabled blockchain system is proposed in this study for secure data storage and sharing in internet of things (IoT) networks, with the MEC acting as an overlay system to provide dynamic computation offloading services. Considering latency-critical, resource-limited, and...
Autores principales: | Hu, Zhuoer, Gao, Hui, Wang, Taotao, Han, Daoqi, Lu, Yueming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100848/ https://www.ncbi.nlm.nih.gov/pubmed/35590907 http://dx.doi.org/10.3390/s22093217 |
Ejemplares similares
-
Blockchain-Enabled Asynchronous Federated Learning in Edge Computing
por: Liu, Yinghui, et al.
Publicado: (2021) -
Optimal Computational Power Allocation in Multi-Access Mobile Edge Computing for Blockchain
por: Wu, Yuan, et al.
Publicado: (2018) -
DRL-OS: A Deep Reinforcement Learning-Based Offloading Scheduler in Mobile Edge Computing
por: Lim, Ducsun, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Edge Caching with Mobility Prediction in Vehicular Networks
por: Choi, Yoonjeong, et al.
Publicado: (2023) -
Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
por: Sheng, Shuran, et al.
Publicado: (2021)