Cargando…
EEG-TNet: An End-To-End Brain Computer Interface Framework for Mental Workload Estimation
The mental workload (MWL) of different occupational groups' workers is the main and direct factor of unsafe behavior, which may cause serious accidents. One of the new and useful technologies to estimate MWL is the Brain computer interface (BCI) based on EEG signals, which is regarded as the go...
Autores principales: | Fan, Chaojie, Hu, Jin, Huang, Shufang, Peng, Yong, Kwong, Sam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100931/ https://www.ncbi.nlm.nih.gov/pubmed/35573313 http://dx.doi.org/10.3389/fnins.2022.869522 |
Ejemplares similares
-
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017) -
EEG-based workload estimation across affective contexts
por: Mühl, Christian, et al.
Publicado: (2014) -
E2ENNet: An end-to-end neural network for emotional brain-computer interface
por: Han, Zhichao, et al.
Publicado: (2022) -
Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment
por: Aricò, Pietro, et al.
Publicado: (2016) -
Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain–Computer Interface
por: Asgher, Umer, et al.
Publicado: (2020)