Cargando…
Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations
Ecological stoichiometry is increasingly acknowledged as one of the main control factors for microbial activity and diversity. Soil carbon/nitrogen (C/N) and carbon/phosphorus (C/P) ratios are usually much higher than microbial nutrient requirements and vary with planting density and stand age in fo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100944/ https://www.ncbi.nlm.nih.gov/pubmed/35572659 http://dx.doi.org/10.3389/fmicb.2022.870667 |
_version_ | 1784706965636644864 |
---|---|
author | Wang, Chaoqun Jiao, Ruzhen |
author_facet | Wang, Chaoqun Jiao, Ruzhen |
author_sort | Wang, Chaoqun |
collection | PubMed |
description | Ecological stoichiometry is increasingly acknowledged as one of the main control factors for microbial activity and diversity. Soil carbon/nitrogen (C/N) and carbon/phosphorus (C/P) ratios are usually much higher than microbial nutrient requirements and vary with planting density and stand age in forestlands. However, how microorganisms cope with such stoichiometric imbalances and how they regulate nutrient cycling remain unclear. Here, 5- and 35-year-old experimental Cunninghamia lanceolata [Lamb.] Hook plantations with five planting densities (1,667, 3,333, 5,000, 6,667, and 10,000 stems ha(−1)) were used to explore the underlying mechanism of the response of microorganisms to stoichiometric imbalances. We found that (i) enzyme activity and microbial biomass and diversity increased with planting density at age 5 but decreased at age 35; (ii) soil microorganisms were P-limited at age 5, but gradually shifted from P- to N-limitation during the development of plantations from 5 to 35 years; and (iii) significantly negative relationships between microbial biomass stoichiometry and enzymatic stoichiometry were observed. The adaptive pathways of soil microorganisms to cope with stoichiometric imbalances include (i) adjusting the stoichiometry of microorganisms and enzymes; (ii) changing the relative abundance of the dominant microbial phyla; and (iii) increasing the ratio of fungal to bacterial diversity. These results highlight how to use the ecological stoichiometry method to identify soil microbial nutrient limitations with planting density during the development of plantations. By underlining the important role of stoichiometry on microbial growth and activity, these findings furthermore emphasize the dependency of organic matter transformation and nutrient cycling on the microbial community. |
format | Online Article Text |
id | pubmed-9100944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91009442022-05-14 Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations Wang, Chaoqun Jiao, Ruzhen Front Microbiol Microbiology Ecological stoichiometry is increasingly acknowledged as one of the main control factors for microbial activity and diversity. Soil carbon/nitrogen (C/N) and carbon/phosphorus (C/P) ratios are usually much higher than microbial nutrient requirements and vary with planting density and stand age in forestlands. However, how microorganisms cope with such stoichiometric imbalances and how they regulate nutrient cycling remain unclear. Here, 5- and 35-year-old experimental Cunninghamia lanceolata [Lamb.] Hook plantations with five planting densities (1,667, 3,333, 5,000, 6,667, and 10,000 stems ha(−1)) were used to explore the underlying mechanism of the response of microorganisms to stoichiometric imbalances. We found that (i) enzyme activity and microbial biomass and diversity increased with planting density at age 5 but decreased at age 35; (ii) soil microorganisms were P-limited at age 5, but gradually shifted from P- to N-limitation during the development of plantations from 5 to 35 years; and (iii) significantly negative relationships between microbial biomass stoichiometry and enzymatic stoichiometry were observed. The adaptive pathways of soil microorganisms to cope with stoichiometric imbalances include (i) adjusting the stoichiometry of microorganisms and enzymes; (ii) changing the relative abundance of the dominant microbial phyla; and (iii) increasing the ratio of fungal to bacterial diversity. These results highlight how to use the ecological stoichiometry method to identify soil microbial nutrient limitations with planting density during the development of plantations. By underlining the important role of stoichiometry on microbial growth and activity, these findings furthermore emphasize the dependency of organic matter transformation and nutrient cycling on the microbial community. Frontiers Media S.A. 2022-04-29 /pmc/articles/PMC9100944/ /pubmed/35572659 http://dx.doi.org/10.3389/fmicb.2022.870667 Text en Copyright © 2022 Wang and Jiao. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Wang, Chaoqun Jiao, Ruzhen Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations |
title | Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations |
title_full | Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations |
title_fullStr | Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations |
title_full_unstemmed | Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations |
title_short | Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations |
title_sort | adaptive pathways of microorganisms to cope with the shift from p- to n-limitation in subtropical plantations |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100944/ https://www.ncbi.nlm.nih.gov/pubmed/35572659 http://dx.doi.org/10.3389/fmicb.2022.870667 |
work_keys_str_mv | AT wangchaoqun adaptivepathwaysofmicroorganismstocopewiththeshiftfromptonlimitationinsubtropicalplantations AT jiaoruzhen adaptivepathwaysofmicroorganismstocopewiththeshiftfromptonlimitationinsubtropicalplantations |