Cargando…
Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells
Hand, foot and mouth disease (HFMD) caused by Coxsackievirus Group B5 (CVB5) is one of the most common herpetic diseases in human infants and children. The pathogenesis of CVB5 remains unknown. Circular RNAs (CircRNAs), as novel noncoding RNAs, have been shown to play a key role in many pathogenic p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101002/ https://www.ncbi.nlm.nih.gov/pubmed/35563023 http://dx.doi.org/10.3390/ijms23094628 |
Sumario: | Hand, foot and mouth disease (HFMD) caused by Coxsackievirus Group B5 (CVB5) is one of the most common herpetic diseases in human infants and children. The pathogenesis of CVB5 remains unknown. Circular RNAs (CircRNAs), as novel noncoding RNAs, have been shown to play a key role in many pathogenic processes in different species; however, their functions during the process of CVB5 infection remain unclear. In the present study, we investigated the expression profiles of circRNAs using RNA sequencing technology in CVB5-infected and mock-infected human rhabdomyosarcoma cells (CVB5 virus that had been isolated from clinical specimens). In addition, several differentially expressed circRNAs were validated by RT-qPCR. Moreover, the innate immune responses related to circRNA-miRNA-mRNA interaction networks were constructed and verified. A total of 5461 circRNAs were identified at different genomic locations in CVB5 infections and controls, of which 235 were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that the differentially expressed circRNAs were principally involved in specific signaling pathways related to ErbB, TNF, and innate immunity. We further predicted that novel_circ_0002006 might act as a molecular sponge for miR-152-3p through the IFN-I pathway to inhibit CVB5 replication, and that novel_circ_0001066 might act as a molecular sponge for miR-29b-3p via the NF-κB pathway and for the inhibition of CVB5 replication. These findings will help to elucidate the biological functions of circRNAs in the progression of CVB5-related HFMD and identify prospective biomarkers and therapeutic targets for this disease. |
---|