Cargando…
Deep Spatiotemporal Model for COVID-19 Forecasting
COVID-19 has caused millions of infections and deaths over the last 2 years. Machine learning models have been proposed as an alternative to conventional epidemiologic models in an effort to optimize short- and medium-term forecasts that will help health authorities to optimize the use of policies a...
Autores principales: | Muñoz-Organero, Mario, Queipo-Álvarez, Paula |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101138/ https://www.ncbi.nlm.nih.gov/pubmed/35591208 http://dx.doi.org/10.3390/s22093519 |
Ejemplares similares
-
Using Absorption Models for Insulin and Carbohydrates and Deep Leaning to Improve Glucose Level Predictions
por: Martínez-Delgado, Laura, et al.
Publicado: (2021) -
Learning Carbohydrate Digestion and Insulin Absorption Curves Using Blood Glucose Level Prediction and Deep Learning Models
por: Muñoz-Organero, Mario, et al.
Publicado: (2021) -
Space-Distributed Traffic-Enhanced LSTM-Based Machine Learning Model for COVID-19 Incidence Forecasting
por: Muñoz-Organero, Mario
Publicado: (2022) -
A new RNN based machine learning model to forecast COVID-19 incidence, enhanced by the use of mobility data from the bike-sharing service in Madrid
por: Muñoz-Organero, Mario, et al.
Publicado: (2023) -
Deep Physiological Model for Blood Glucose Prediction in T1DM Patients
por: Munoz-Organero, Mario
Publicado: (2020)