Cargando…
A Time-Driven Cloudlet Placement Strategy for Workflow Applications in Wireless Metropolitan Area Networks
With the rapid development of mobile technology, mobile applications have increasing requirements for computational resources, and mobile devices can no longer meet these requirements. Mobile edge computing (MEC) has emerged in this context and has brought innovation into the working mode of traditi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101140/ https://www.ncbi.nlm.nih.gov/pubmed/35591112 http://dx.doi.org/10.3390/s22093422 |
_version_ | 1784707012940005376 |
---|---|
author | Zhang, Jianshan Li, Ming Zheng, Xianghan Hsu, Ching-Hsien |
author_facet | Zhang, Jianshan Li, Ming Zheng, Xianghan Hsu, Ching-Hsien |
author_sort | Zhang, Jianshan |
collection | PubMed |
description | With the rapid development of mobile technology, mobile applications have increasing requirements for computational resources, and mobile devices can no longer meet these requirements. Mobile edge computing (MEC) has emerged in this context and has brought innovation into the working mode of traditional cloud computing. By provisioning edge server placement, the computing power of the cloud center is distributed to the edge of the network. The abundant computational resources of edge servers compensate for the lack of mobile devices and shorten the communication delay between servers and users. Constituting a specific form of edge servers, cloudlets have been widely studied within academia and industry in recent years. However, existing studies have mainly focused on computation offloading for general computing tasks under fixed cloudlet placement positions. They ignored the impact on computation offloading results from cloudlet placement positions and data dependencies among mobile application components. In this paper, we study the cloudlet placement problem based on workflow applications (WAs) in wireless metropolitan area networks (WMANs). We devise a cloudlet placement strategy based on a particle swarm optimization algorithm using genetic algorithm operators with the encoding library updating mode (PGEL), which enables the cloudlet to be placed in appropriate positions. The simulation results show that the proposed strategy can obtain a near-optimal cloudlet placement scheme. Compared with other classic algorithms, this algorithm can reduce the execution time of WAs by 15.04–44.99%. |
format | Online Article Text |
id | pubmed-9101140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91011402022-05-14 A Time-Driven Cloudlet Placement Strategy for Workflow Applications in Wireless Metropolitan Area Networks Zhang, Jianshan Li, Ming Zheng, Xianghan Hsu, Ching-Hsien Sensors (Basel) Article With the rapid development of mobile technology, mobile applications have increasing requirements for computational resources, and mobile devices can no longer meet these requirements. Mobile edge computing (MEC) has emerged in this context and has brought innovation into the working mode of traditional cloud computing. By provisioning edge server placement, the computing power of the cloud center is distributed to the edge of the network. The abundant computational resources of edge servers compensate for the lack of mobile devices and shorten the communication delay between servers and users. Constituting a specific form of edge servers, cloudlets have been widely studied within academia and industry in recent years. However, existing studies have mainly focused on computation offloading for general computing tasks under fixed cloudlet placement positions. They ignored the impact on computation offloading results from cloudlet placement positions and data dependencies among mobile application components. In this paper, we study the cloudlet placement problem based on workflow applications (WAs) in wireless metropolitan area networks (WMANs). We devise a cloudlet placement strategy based on a particle swarm optimization algorithm using genetic algorithm operators with the encoding library updating mode (PGEL), which enables the cloudlet to be placed in appropriate positions. The simulation results show that the proposed strategy can obtain a near-optimal cloudlet placement scheme. Compared with other classic algorithms, this algorithm can reduce the execution time of WAs by 15.04–44.99%. MDPI 2022-04-29 /pmc/articles/PMC9101140/ /pubmed/35591112 http://dx.doi.org/10.3390/s22093422 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Jianshan Li, Ming Zheng, Xianghan Hsu, Ching-Hsien A Time-Driven Cloudlet Placement Strategy for Workflow Applications in Wireless Metropolitan Area Networks |
title | A Time-Driven Cloudlet Placement Strategy for Workflow Applications in Wireless Metropolitan Area Networks |
title_full | A Time-Driven Cloudlet Placement Strategy for Workflow Applications in Wireless Metropolitan Area Networks |
title_fullStr | A Time-Driven Cloudlet Placement Strategy for Workflow Applications in Wireless Metropolitan Area Networks |
title_full_unstemmed | A Time-Driven Cloudlet Placement Strategy for Workflow Applications in Wireless Metropolitan Area Networks |
title_short | A Time-Driven Cloudlet Placement Strategy for Workflow Applications in Wireless Metropolitan Area Networks |
title_sort | time-driven cloudlet placement strategy for workflow applications in wireless metropolitan area networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101140/ https://www.ncbi.nlm.nih.gov/pubmed/35591112 http://dx.doi.org/10.3390/s22093422 |
work_keys_str_mv | AT zhangjianshan atimedrivencloudletplacementstrategyforworkflowapplicationsinwirelessmetropolitanareanetworks AT liming atimedrivencloudletplacementstrategyforworkflowapplicationsinwirelessmetropolitanareanetworks AT zhengxianghan atimedrivencloudletplacementstrategyforworkflowapplicationsinwirelessmetropolitanareanetworks AT hsuchinghsien atimedrivencloudletplacementstrategyforworkflowapplicationsinwirelessmetropolitanareanetworks AT zhangjianshan timedrivencloudletplacementstrategyforworkflowapplicationsinwirelessmetropolitanareanetworks AT liming timedrivencloudletplacementstrategyforworkflowapplicationsinwirelessmetropolitanareanetworks AT zhengxianghan timedrivencloudletplacementstrategyforworkflowapplicationsinwirelessmetropolitanareanetworks AT hsuchinghsien timedrivencloudletplacementstrategyforworkflowapplicationsinwirelessmetropolitanareanetworks |