Cargando…
An Efficient Lightweight SAR Ship Target Detection Network with Improved Regression Loss Function and Enhanced Feature Information Expression
It is difficult to identify the ship images obtained by a synthetic aperture radar (SAR) due to the influence of dense ships, complex background and small target size, so a deep learning-based target detection algorithm was introduced to obtain better detection performance. However, in order to achi...
Autores principales: | Yu, Jimin, Wu, Tao, Zhang, Xin, Zhang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101316/ https://www.ncbi.nlm.nih.gov/pubmed/35591135 http://dx.doi.org/10.3390/s22093447 |
Ejemplares similares
-
A Lightweight YOLOv5-MNE Algorithm for SAR Ship Detection
por: Pang, Lei, et al.
Publicado: (2022) -
MSIA-Net: A Lightweight Infrared Target Detection Network with Efficient Information Fusion
por: Yu, Jimin, et al.
Publicado: (2023) -
LPDNet: A Lightweight Network for SAR Ship Detection Based on Multi-Level Laplacian Denoising
por: Zhao, Congxia, et al.
Publicado: (2023) -
Robust Ship Detection in Infrared Images through Multiscale Feature Extraction and Lightweight CNN
por: Miao, Rui, et al.
Publicado: (2022) -
Lightweight Feature Enhancement Network for Single-Shot Object Detection
por: Jia, Peng, et al.
Publicado: (2021)