Cargando…
A Machine Learning Approach for Detecting Cognitive Interference Based on Eye-Tracking Data
The Stroop test evaluates the ability to inhibit cognitive interference. This interference occurs when the processing of one stimulus characteristic affects the simultaneous processing of another attribute of the same stimulus. Eye movements are an indicator of the individual attention load required...
Autores principales: | Rizzo, Antonio, Ermini, Sara, Zanca, Dario, Bernabini, Dario, Rossi, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101480/ https://www.ncbi.nlm.nih.gov/pubmed/35572006 http://dx.doi.org/10.3389/fnhum.2022.806330 |
Ejemplares similares
-
Eye-Tracking Feature Extraction for Biometric Machine Learning
por: Lim, Jia Zheng, et al.
Publicado: (2022) -
Early detection of cognitive decline in Alzheimer’s disease using eye tracking
por: Tokushige, Shin-ichi, et al.
Publicado: (2023) -
Reward Draws the Eye, Uncertainty Holds the Eye: Associative Learning Modulates Distractor Interference in Visual Search
por: Koenig, Stephan, et al.
Publicado: (2017) -
A Deep Learning-Based Approach to Video-Based Eye Tracking for Human Psychophysics
por: Zdarsky, Niklas, et al.
Publicado: (2021) -
Pursuit tracks chase: exploring the role of eye movements in the detection of chasing
por: Šimkovic, Matúš, et al.
Publicado: (2015)