Cargando…
Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction
Quick, efficient, fully automated open-source programs to segment muscle and adipose tissues from computed tomography (CT) images would be a great contribution to body composition research. This study examined the concordance of cross-sectional areas (CSA) and densities for muscle, visceral adipose...
Autores principales: | Gomez-Perez, Sandra L., Zhang, Yanyu, Byrne, Cecily, Wakefield, Connor, Geesey, Thomas, Sclamberg, Joy, Peterson, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101564/ https://www.ncbi.nlm.nih.gov/pubmed/35591047 http://dx.doi.org/10.3390/s22093357 |
Ejemplares similares
-
Validation of skeletal muscle and adipose tissue measurements using a fully automated body composition analysis neural network versus a semi-automatic reference program with human correction in patients with lung cancer
por: Byrne, Cecily A., et al.
Publicado: (2022) -
Fully and semi-automated shape differentiation in NGSolve
por: Gangl, Peter, et al.
Publicado: (2020) -
Validation of three viable-cell counting methods: Manual, semi-automated, and automated
por: Cadena-Herrera, Daniela, et al.
Publicado: (2015) -
Assessment of the Concordance and Diagnostic Accuracy Between Elecsys and Lumipulse Fully Automated Platforms and Innotest
por: Dakterzada, Farida, et al.
Publicado: (2021) -
Fully Mechanically Controlled Automated Electron Microscopic Tomography
por: Liu, Jinxin, et al.
Publicado: (2016)