Cargando…
Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning
Web applications have become ubiquitous for many business sectors due to their platform independence and low operation cost. Billions of users are visiting these applications to accomplish their daily tasks. However, many of these applications are either vulnerable to web defacement attacks or creat...
Autores principales: | Ghaleb, Fuad A., Alsaedi, Mohammed, Saeed, Faisal, Ahmad, Jawad, Alasli, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101641/ https://www.ncbi.nlm.nih.gov/pubmed/35591061 http://dx.doi.org/10.3390/s22093373 |
Ejemplares similares
-
Classification of Malicious URLs Using Machine Learning
por: Abad, Shayan, et al.
Publicado: (2023) -
Malicious URL Detection Based on Associative Classification
por: Kumi, Sandra, et al.
Publicado: (2021) -
An intelligent identification and classification system for malicious uniform resource locators (URLs)
por: Abu Al-Haija, Qasem, et al.
Publicado: (2023) -
BERT-Based Approaches to Identifying Malicious URLs
por: Su, Ming-Yang, et al.
Publicado: (2023) -
An Assessment of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep Learning Models
por: Aljabri, Malak, et al.
Publicado: (2022)