Cargando…

Comparative Analysis of the Metabolome and Transcriptome between the Green and Yellow-Green Regions of Variegated Leaves in a Mutant Variety of the Tree Species Pteroceltis tatarinowii

In nature, many different factors cause plants to develop variegated leaves. To explore the mechanism of variegated leaf formation in Pteroceltis tatarinowii, a mutant variety (‘Jinyuyuan’), which was induced by ethylmethylsulfone, was selected, and its morphological structure, physiology, biochemis...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Qian, Wu, Chong, Cheng, Tian-Tian, Yan, Yu, Zhang, Lin, Wan, Ying-Lin, Wang, Jia-Wei, Liu, Qing-Zhong, Feng, Zhen, Liu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101679/
https://www.ncbi.nlm.nih.gov/pubmed/35563341
http://dx.doi.org/10.3390/ijms23094950
Descripción
Sumario:In nature, many different factors cause plants to develop variegated leaves. To explore the mechanism of variegated leaf formation in Pteroceltis tatarinowii, a mutant variety (‘Jinyuyuan’), which was induced by ethylmethylsulfone, was selected, and its morphological structure, physiology, biochemistry, transcription and metabolism were analysed. According to differences in colour values, the colours were divided into two regions: a green region and a yellow-green region. The chlorophyll content of the two regions was significantly different. Moreover, the yellow-green regions of the leaves were significantly thinner than the green regions. The chloroplast ultrastructure in the yellow-green region revealed small chloroplasts, large vacuoles, small starch grains, obviously increased numbers of osmophilic grains, loose lamellae of the inner capsule and thin lamellae. Moreover, the yellow-green region was accompanied by oxidative stress, and the activity of the oxidative phosphorylation pathway related to oxidative activity in the transcriptome showed an upward trend. Vitamin B6 and proline contents also increased, indicating that the antioxidant activity of cells in the yellow-green region increased. Transcriptomic and metabolomic analysis showed that the differentially expressed genes (DEGs) related to chlorophyll synthesis and metabolism led to a decrease in the photosynthesis and then a decrease in the assimilation ability and contents of sucrose, starch and other assimilates. Amino acid synthesis and metabolism, lipid synthesis and the activity of metabolic pathways were obviously downregulated, and the contents of differentially accumulated metabolites associated with amino acids and lipids were also reduced. At the same time, 31 out of 32 DEGs involved in the flavonoid synthesis pathway were downregulated, which affected leaf colour. We hypothesized that the variegated leaves of P. tatarinowii ‘Jinyuyuan’ are caused by transcriptional and post-transcriptional regulation. Mutations in pigment and flavonoid synthesis pathway genes and transcription factor genes directly affect both pigment and flavonoid synthesis and degradation rate, which in turn affect carbon assimilation, carbon fixation, related protein synthesis and enzyme activity, lipid synthesis and degradation and the activity of other metabolic pathways, eventually leading to the formation of different colour regions.