Cargando…
Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting
In this paper, we propose a context-aware multi-scale aggregation network named CMSNet for dense crowd counting, which effectively uses contextual information and multi-scale information to conduct crowd density estimation. To achieve this, a context-aware multi-scale aggregation module (CMSM) is de...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101686/ https://www.ncbi.nlm.nih.gov/pubmed/35590922 http://dx.doi.org/10.3390/s22093233 |
Sumario: | In this paper, we propose a context-aware multi-scale aggregation network named CMSNet for dense crowd counting, which effectively uses contextual information and multi-scale information to conduct crowd density estimation. To achieve this, a context-aware multi-scale aggregation module (CMSM) is designed. Specifically, CMSM consists of a multi-scale aggregation module (MSAM) and a context-aware module (CAM). The MSAM is used to obtain multi-scale crowd features. The CAM is used to enhance the extracted multi-scale crowd feature with more context information to efficiently recognize crowds. We conduct extensive experiments on three challenging datasets, i.e., ShanghaiTech, UCF_CC_50, and UCF-QNRF, and the results showed that our model yielded compelling performance against the other state-of-the-art methods, which demonstrate the effectiveness of our method for congested crowd counting. |
---|