Cargando…
Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine
Data streaming applications such as the Internet of Things (IoT) require processing or predicting from sequential data from various sensors. However, most of the data are unlabeled, making applying fully supervised learning algorithms impossible. The online manifold regularization approach allows se...
Autores principales: | Muhammad Zaly Shah, Muhammad Zafran, Zainal, Anazida, Ghaleb, Fuad A., Al-Qarafi, Abdulrahman, Saeed, Faisal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101820/ https://www.ncbi.nlm.nih.gov/pubmed/35590801 http://dx.doi.org/10.3390/s22093113 |
Ejemplares similares
-
Semi-supervised multi-label classification using an extended graph-based manifold regularization
por: Li, Ding, et al.
Publicado: (2022) -
A rotation based regularization method for semi-supervised learning
por: Shukla, Prashant, et al.
Publicado: (2021) -
Semi‐supervised empirical Bayes group‐regularized factor regression
por: Münch, Magnus M., et al.
Publicado: (2022) -
Causal Learning via Manifold Regularization
por: Hill, Steven M., et al.
Publicado: (2019) -
Manifold regularization for sparse unmixing of hyperspectral images
por: Liu, Junmin, et al.
Publicado: (2016)