Cargando…

Influence of Mineralogical Structure of Mold Flux Film on Heat Transfer in Mold during Continuous Casting of Peritectic Steel

The mineralogical structure of flux films is a critical factor in controlling heat transfer in the mold and avoiding the longitudinal cracking of slabs during the continuous casting of peritectic steel. In this study, the layered structure, crystallization ratio, mineralogical species, and morpholog...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Lei, Han, Xiuli, Li, Mingduo, Zhang, Di
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102152/
https://www.ncbi.nlm.nih.gov/pubmed/35591315
http://dx.doi.org/10.3390/ma15092980
Descripción
Sumario:The mineralogical structure of flux films is a critical factor in controlling heat transfer in the mold and avoiding the longitudinal cracking of slabs during the continuous casting of peritectic steel. In this study, the layered structure, crystallization ratio, mineralogical species, and morphology features of flux films were characterized by optical microscopy, X-ray diffraction, and electron-probe microanalysis. Microstructural observation revealed that the normal flux films for peritectic steels present a multilayered structure and high crystallization ratio (60~90 vol%), mainly composed of well-developed crystalline akermanite and cuspidine. In contrast, the films with outstanding flux characteristics with abundant longitudinal cracks on the slab surface have a low crystallization ratio (<50 vol%) or vast crystallite content (>80 vol%). Furthermore, heat transfer analysis showed that the low crystallization ratio and the vast crystallite content of flux films worsen the heat transfer rate or uniformity in the mold, whereas the appropriate thickness and cuspidine content of flux films can improve the heat transfer performance. From the above results, it is concluded that using strong crystalline flux to obtain the ideal mineral phase structure of flux film is one of the important measures for reducing longitudinal cracks during continuous casting of peritectic steel slabs.