Cargando…
Laser-Induced Breakdown Spectroscopy Combined with Nonlinear Manifold Learning for Improvement Aluminum Alloy Classification Accuracy
Laser-induced breakdown spectroscopy (LIBS) spectra often include many intensity lines, and obtaining meaningful information from the input dataset and condensing the dimensions of the original data has become a significant challenge in LIBS applications. This study was conducted to classify five di...
Autores principales: | Harefa, Edward, Zhou, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102175/ https://www.ncbi.nlm.nih.gov/pubmed/35590818 http://dx.doi.org/10.3390/s22093129 |
Ejemplares similares
-
Visualization and accuracy improvement of soil classification using laser-induced breakdown spectroscopy with deep learning
por: Chu, Yanwu, et al.
Publicado: (2023) -
Benchmark classification dataset for laser-induced breakdown spectroscopy
por: Képeš, Erik, et al.
Publicado: (2020) -
Simple defocus laser irradiation to suppress self-absorption in laser-induced breakdown spectroscopy (LIBS)
por: Marpaung, Alion Mangasi, et al.
Publicado: (2022) -
Combined laser-induced breakdown spectroscopy and hyperspectral imaging with machine learning for the classification and identification of rice geographical origin
por: Liu, Yuanyuan, et al.
Publicado: (2022) -
Nonlinear Feature Extraction Through Manifold Learning in an Electronic Tongue Classification Task
por: Leon-Medina, Jersson X., et al.
Publicado: (2020)