Cargando…
Efficient Path Planning for Mobile Robot Based on Deep Deterministic Policy Gradient
When a traditional Deep Deterministic Policy Gradient (DDPG) algorithm is used in mobile robot path planning, due to the limited observable environment of mobile robots, the training efficiency of the path planning model is low, and the convergence speed is slow. In this paper, Long Short-Term Memor...
Autores principales: | Gong, Hui, Wang, Peng, Ni, Cui, Cheng, Nuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102217/ https://www.ncbi.nlm.nih.gov/pubmed/35591271 http://dx.doi.org/10.3390/s22093579 |
Ejemplares similares
-
Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments
por: Park, Minjae, et al.
Publicado: (2022) -
An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms
por: Dong, Ruyi, et al.
Publicado: (2023) -
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
por: Shi, Haibo, et al.
Publicado: (2018) -
Network Architecture for Optimizing Deep Deterministic Policy Gradient Algorithms
por: Zhang, Haifei, et al.
Publicado: (2022) -
Implementation of Deep Deterministic Policy Gradients for Controlling Dynamic Bipedal Walking
por: Liu, Chujun, et al.
Publicado: (2019)