Cargando…
Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches
The entraining and distribution of air voids in the concrete matrix is a complex process that makes the mechanical properties of lightweight foamed concrete (LFC) highly unpredictable. To study the complex nature of aerated concrete, a reliable and robust prediction model is required, employing diff...
Autores principales: | Ullah, Haji Sami, Khushnood, Rao Arsalan, Farooq, Furqan, Ahmad, Junaid, Vatin, Nikolai Ivanovich, Ewais, Dina Yehia Zakaria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102231/ https://www.ncbi.nlm.nih.gov/pubmed/35591498 http://dx.doi.org/10.3390/ma15093166 |
Ejemplares similares
-
Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
por: Ilyas, Israr, et al.
Publicado: (2021) -
Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete
por: Dai, Li, et al.
Publicado: (2022) -
Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Forecasting Compressive Strength of RHA Based Concrete Using Multi-Expression Programming
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
The Prediction of Compressive Strength and Compressive Stress–Strain of Basalt Fiber Reinforced High-Performance Concrete Using Classical Programming and Logistic Map Algorithm
por: Hematibahar, Mohammad, et al.
Publicado: (2022)