Cargando…

Endoscopic Ultrasound-Guided Laser Ablation Using a Diffusing Applicator for Locally Advanced Pancreatic Cancer Treatment

SIMPLE SUMMARY: Pancreatic cancer (PC) is one of the most lethal cancers; caused by family history, obesity, diabetes, and smoking, it has a 2–9% five-year survival rate. However, patients diagnosed by endoscopic ultrasound (EUS) already have an advanced stage of PC, indicating the difficulty of sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Seonghee, Truong, Van Gia, Choi, Jongman, Jeong, Hye Jung, Oh, Sun-Ju, Park, Jin-Seok, Kang, Hyun Wook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102236/
https://www.ncbi.nlm.nih.gov/pubmed/35565403
http://dx.doi.org/10.3390/cancers14092274
Descripción
Sumario:SIMPLE SUMMARY: Pancreatic cancer (PC) is one of the most lethal cancers; caused by family history, obesity, diabetes, and smoking, it has a 2–9% five-year survival rate. However, patients diagnosed by endoscopic ultrasound (EUS) already have an advanced stage of PC, indicating the difficulty of surgical resection. Recently, laser ablative treatment with a diffusing applicator has been proven to be feasible for treating advanced PC. Despite the potential application for treating PC, further evaluation of acute and chronic tissue responses are essential to determine the efficacy and safety of diffusing applicator under EUS guidance. In this study, EUS-guided diffusing applicator-assisted laser ablation was evaluated to quantify the extent of the tissue response after the delivery of various energy levels. ABSTRACT: Endoscopic ultrasound (EUS)-guided cylindrical interstitial laser ablation (CILA) procedures can be used to treat unresectable pancreatic cancer (PC). The aim of this study was to investigate the acute responses of pancreatic tissue after EUS-guided CILA in vivo in porcine models. Eight pigs were tested to compare the effects of different energy levels on pancreatic tissue ablation. A 1064 nm laser system was used to deliver 5 W through a diffusing applicator. The EUS-guided CILA was performed under four different energies: 200, 400, 600, and 800 J. Three days after the experiments, histological analysis was performed. The CILA consistently generated circular coagulated necrosis (CN) in the cross-sectioned pancreatic tissue. The ablation diameter was linearly dependent on the total energy delivery. The area of the CN initially increased with total energy delivery but became saturated at 600 J. The width of the degenerative parenchyma (DP) in the native tissue beyond the CN region increased with the total energy up to 600 J, and then decreased afterward. EUS-guided CILA can be a feasible approach for treating PC. Further animal studies will investigate the chronic responses of the pancreatic tissue to examine the efficacy and safety of the proposed method for clinical translation.