Cargando…
Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid
This study aimed to analyze the momentum and thermal transport of a rotating dusty Maxwell nanofluid flow on a magnetohydrodynamic Darcy–Forchheimer porous medium with conducting dust particles. Nanouids are the most important source of effective heat source, having many applications in scientific a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102270/ https://www.ncbi.nlm.nih.gov/pubmed/35564220 http://dx.doi.org/10.3390/nano12091512 |
_version_ | 1784707289290113024 |
---|---|
author | Wei, Yanming Rehman, Saif Ur Fatima, Nageen Ali, Bagh Ali, Liaqat Chung, Jae Dong Shah, Nehad Ali |
author_facet | Wei, Yanming Rehman, Saif Ur Fatima, Nageen Ali, Bagh Ali, Liaqat Chung, Jae Dong Shah, Nehad Ali |
author_sort | Wei, Yanming |
collection | PubMed |
description | This study aimed to analyze the momentum and thermal transport of a rotating dusty Maxwell nanofluid flow on a magnetohydrodynamic Darcy–Forchheimer porous medium with conducting dust particles. Nanouids are the most important source of effective heat source, having many applications in scientific and technological processes. The dust nanoparticles with superior thermal characteristics offer a wide range of uses in chemical and mechanical engineering eras and modern technology. In addition, nanofluid Cu-water is used as the heat-carrying fluid. The governing equations for the two phases model are partial differential equations later transmuted into ordinary ones via similarity transforms. An efficient code for the Runge–Kutta technique with a shooting tool is constructed in MATLAB script to obtain numeric results. The study is compared to previously published work and determined to be perfect. It is observed that the rising strength of the rotating and magnetic parameters cause to recede the x- and y-axis velocities in the two phase fluid, but the temperature function exhibits an opposite trend. By improving the diameter of nanoparticles [Formula: see text] , the axial velocity improves while transverse velocity and temperature show the opposite behaviors. Furthermore, it is reported that the inclusion of dust particles or nanoparticles both cause to decline the primary and secondary velocities of fluid, and also dust particles decrease the temperature. |
format | Online Article Text |
id | pubmed-9102270 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91022702022-05-14 Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid Wei, Yanming Rehman, Saif Ur Fatima, Nageen Ali, Bagh Ali, Liaqat Chung, Jae Dong Shah, Nehad Ali Nanomaterials (Basel) Article This study aimed to analyze the momentum and thermal transport of a rotating dusty Maxwell nanofluid flow on a magnetohydrodynamic Darcy–Forchheimer porous medium with conducting dust particles. Nanouids are the most important source of effective heat source, having many applications in scientific and technological processes. The dust nanoparticles with superior thermal characteristics offer a wide range of uses in chemical and mechanical engineering eras and modern technology. In addition, nanofluid Cu-water is used as the heat-carrying fluid. The governing equations for the two phases model are partial differential equations later transmuted into ordinary ones via similarity transforms. An efficient code for the Runge–Kutta technique with a shooting tool is constructed in MATLAB script to obtain numeric results. The study is compared to previously published work and determined to be perfect. It is observed that the rising strength of the rotating and magnetic parameters cause to recede the x- and y-axis velocities in the two phase fluid, but the temperature function exhibits an opposite trend. By improving the diameter of nanoparticles [Formula: see text] , the axial velocity improves while transverse velocity and temperature show the opposite behaviors. Furthermore, it is reported that the inclusion of dust particles or nanoparticles both cause to decline the primary and secondary velocities of fluid, and also dust particles decrease the temperature. MDPI 2022-04-29 /pmc/articles/PMC9102270/ /pubmed/35564220 http://dx.doi.org/10.3390/nano12091512 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wei, Yanming Rehman, Saif Ur Fatima, Nageen Ali, Bagh Ali, Liaqat Chung, Jae Dong Shah, Nehad Ali Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid |
title | Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid |
title_full | Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid |
title_fullStr | Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid |
title_full_unstemmed | Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid |
title_short | Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid |
title_sort | significance of dust particles, nanoparticles radius, coriolis and lorentz forces: the case of maxwell dusty fluid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102270/ https://www.ncbi.nlm.nih.gov/pubmed/35564220 http://dx.doi.org/10.3390/nano12091512 |
work_keys_str_mv | AT weiyanming significanceofdustparticlesnanoparticlesradiuscoriolisandlorentzforcesthecaseofmaxwelldustyfluid AT rehmansaifur significanceofdustparticlesnanoparticlesradiuscoriolisandlorentzforcesthecaseofmaxwelldustyfluid AT fatimanageen significanceofdustparticlesnanoparticlesradiuscoriolisandlorentzforcesthecaseofmaxwelldustyfluid AT alibagh significanceofdustparticlesnanoparticlesradiuscoriolisandlorentzforcesthecaseofmaxwelldustyfluid AT aliliaqat significanceofdustparticlesnanoparticlesradiuscoriolisandlorentzforcesthecaseofmaxwelldustyfluid AT chungjaedong significanceofdustparticlesnanoparticlesradiuscoriolisandlorentzforcesthecaseofmaxwelldustyfluid AT shahnehadali significanceofdustparticlesnanoparticlesradiuscoriolisandlorentzforcesthecaseofmaxwelldustyfluid |