Cargando…
Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals Using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis
Autores principales: | Hossain, Md Shafayet, Chowdhury, Muhammad E. H., Reaz, Mamun Bin Ibne, Ali, Sawal Hamid Md, Bakar, Ahmad Ashrif A., Kiranyaz, Serkan, Khandakar, Amith, Alhatou, Mohammed, Habib, Rumana, Hossain, Muhammad Maqsud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102309/ https://www.ncbi.nlm.nih.gov/pubmed/35590859 http://dx.doi.org/10.3390/s22093169 |
Ejemplares similares
-
Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature
por: Khandakar, Amith, et al.
Publicado: (2022) -
Machine Learning-Based Diabetic Neuropathy and Previous Foot Ulceration Patients Detection Using Electromyography and Ground Reaction Forces during Gait
por: Haque, Fahmida, et al.
Publicado: (2022) -
A Novel Machine Learning Approach for Severity Classification of Diabetic Foot Complications Using Thermogram Images
por: Khandakar, Amith, et al.
Publicado: (2022) -
MultiResUNet3+: A Full-Scale Connected Multi-Residual UNet Model to Denoise Electrooculogram and Electromyogram Artifacts from Corrupted Electroencephalogram Signals
por: Hossain, Md Shafayet, et al.
Publicado: (2023) -
Lightweight End-to-End Deep Learning Solution for Estimating the Respiration Rate from Photoplethysmogram Signal
por: Chowdhury, Moajjem Hossain, et al.
Publicado: (2022)