Cargando…
Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning
Wine grapes need frequent monitoring to achieve high yields and quality. Non-destructive methods, such as proximal and remote sensing, are commonly used to estimate crop yield and quality characteristics, and spectral vegetation indices (VIs) are often used to present site-specific information. Anal...
Autores principales: | Kasimati, Aikaterini, Espejo-García, Borja, Darra, Nicoleta, Fountas, Spyros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102316/ https://www.ncbi.nlm.nih.gov/pubmed/35590939 http://dx.doi.org/10.3390/s22093249 |
Ejemplares similares
-
Investigating a Selection of Methods for the Prediction of Total Soluble Solids Among Wine Grape Quality Characteristics Using Normalized Difference Vegetation Index Data From Proximal and Remote Sensing
por: Kasimati, Aikaterini, et al.
Publicado: (2021) -
Can Satellites Predict Yield? Ensemble Machine Learning and Statistical Analysis of Sentinel-2 Imagery for Processing Tomato Yield Prediction
por: Darra, Nicoleta, et al.
Publicado: (2023) -
Grape Sugar and Glucose
por: Tallman, J. M.
Publicado: (1882) -
The Discovery of Grape Sugar
Publicado: (1883) -
Comprehensive metabolomics-based analysis of sugar composition and content in berries of 18 grape varieties
por: Zhong, Haixia, et al.
Publicado: (2023)