Cargando…
Computer-Aided Depth Video Stream Masking Framework for Human Body Segmentation in Depth Sensor Images
The identification of human activities from videos is important for many applications. For such a task, three-dimensional (3D) depth images or image sequences (videos) can be used, which represent the positioning information of the objects in a 3D scene obtained from depth sensors. This paper presen...
Autores principales: | Ryselis, Karolis, Blažauskas, Tomas, Damaševičius, Robertas, Maskeliūnas, Rytis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102319/ https://www.ncbi.nlm.nih.gov/pubmed/35591221 http://dx.doi.org/10.3390/s22093531 |
Ejemplares similares
-
Agrast-6: Abridged VGG-Based Reflected Lightweight Architecture for Binary Segmentation of Depth Images Captured by Kinect
por: Ryselis, Karolis, et al.
Publicado: (2022) -
A Lightweight Protocol for Secure Video Streaming
por: Venčkauskas, Algimantas, et al.
Publicado: (2018) -
Auto-Refining Reconstruction Algorithm for Recreation of Limited Angle Humanoid Depth Data
por: Kulikajevas, Audrius, et al.
Publicado: (2021) -
3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network
por: Kulikajevas, Audrius, et al.
Publicado: (2020) -
A Mobile Application for Smart Computer-Aided Self-Administered Testing of Cognition, Speech, and Motor Impairment
por: Lauraitis, Andrius, et al.
Publicado: (2020)