Cargando…
Data-Driven Parameter Selection and Modeling for Concrete Carbonation
Concrete carbonation is known as a stochastic process. Its uncertainties mainly result from parameters that are not considered in prediction models. Parameter selection, therefore, is important. In this paper, based on 8204 sets of data, statistical methods and machine learning techniques were appli...
Autores principales: | Duan, Kangkang, Cao, Shuangyin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102323/ https://www.ncbi.nlm.nih.gov/pubmed/35591685 http://dx.doi.org/10.3390/ma15093351 |
Ejemplares similares
-
Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading
por: Li, Ke, et al.
Publicado: (2018) -
Research on Concrete Columns Reinforced with New Developed High-Strength Steel under Eccentric Loading
por: Hou, Yonghui, et al.
Publicado: (2019) -
Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete
por: Zhao, Jinzhong, et al.
Publicado: (2022) -
Data-Driven Regularization Parameter Selection in Dynamic MRI
por: Hanhela, Matti, et al.
Publicado: (2021) -
Dielectric Model of Carbon Nanofiber Reinforced Concrete
por: Wang, Zhi-Hang, et al.
Publicado: (2020)