Cargando…

Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures

Non-melanoma skin cancer, and basal cell carcinoma in particular, is one of the most common types of cancer. Although this type of malignancy has lower metastatic rates than other types of skin cancer, its locally destructive nature and the advantages of its timely treatment make early detection vit...

Descripción completa

Detalles Bibliográficos
Autores principales: Courtenay, Lloyd A., González-Aguilera, Diego, Lagüela, Susana, Pozo, Susana Del, Ruiz, Camilo, Barbero-García, Inés, Román-Curto, Concepción, Cañueto, Javier, Santos-Durán, Carlos, Cardeñoso-Álvarez, María Esther, Roncero-Riesco, Mónica, Hernández-López, David, Guerrero-Sevilla, Diego, Rodríguez-Gonzalvez, Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102335/
https://www.ncbi.nlm.nih.gov/pubmed/35566440
http://dx.doi.org/10.3390/jcm11092315
_version_ 1784707304193523712
author Courtenay, Lloyd A.
González-Aguilera, Diego
Lagüela, Susana
Pozo, Susana Del
Ruiz, Camilo
Barbero-García, Inés
Román-Curto, Concepción
Cañueto, Javier
Santos-Durán, Carlos
Cardeñoso-Álvarez, María Esther
Roncero-Riesco, Mónica
Hernández-López, David
Guerrero-Sevilla, Diego
Rodríguez-Gonzalvez, Pablo
author_facet Courtenay, Lloyd A.
González-Aguilera, Diego
Lagüela, Susana
Pozo, Susana Del
Ruiz, Camilo
Barbero-García, Inés
Román-Curto, Concepción
Cañueto, Javier
Santos-Durán, Carlos
Cardeñoso-Álvarez, María Esther
Roncero-Riesco, Mónica
Hernández-López, David
Guerrero-Sevilla, Diego
Rodríguez-Gonzalvez, Pablo
author_sort Courtenay, Lloyd A.
collection PubMed
description Non-melanoma skin cancer, and basal cell carcinoma in particular, is one of the most common types of cancer. Although this type of malignancy has lower metastatic rates than other types of skin cancer, its locally destructive nature and the advantages of its timely treatment make early detection vital. The combination of multispectral imaging and artificial intelligence has arisen as a powerful tool for the detection and classification of skin cancer in a non-invasive manner. The present study uses hyperspectral images to discern between healthy and basal cell carcinoma hyperspectral signatures. Upon the combined use of convolutional neural networks, with a final support vector machine activation layer, the present study reaches up to 90% accuracy, with an area under the receiver operating characteristic curve being calculated at 0.9 as well. While the results are promising, future research should build upon a dataset with a larger number of patients.
format Online
Article
Text
id pubmed-9102335
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91023352022-05-14 Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures Courtenay, Lloyd A. González-Aguilera, Diego Lagüela, Susana Pozo, Susana Del Ruiz, Camilo Barbero-García, Inés Román-Curto, Concepción Cañueto, Javier Santos-Durán, Carlos Cardeñoso-Álvarez, María Esther Roncero-Riesco, Mónica Hernández-López, David Guerrero-Sevilla, Diego Rodríguez-Gonzalvez, Pablo J Clin Med Article Non-melanoma skin cancer, and basal cell carcinoma in particular, is one of the most common types of cancer. Although this type of malignancy has lower metastatic rates than other types of skin cancer, its locally destructive nature and the advantages of its timely treatment make early detection vital. The combination of multispectral imaging and artificial intelligence has arisen as a powerful tool for the detection and classification of skin cancer in a non-invasive manner. The present study uses hyperspectral images to discern between healthy and basal cell carcinoma hyperspectral signatures. Upon the combined use of convolutional neural networks, with a final support vector machine activation layer, the present study reaches up to 90% accuracy, with an area under the receiver operating characteristic curve being calculated at 0.9 as well. While the results are promising, future research should build upon a dataset with a larger number of patients. MDPI 2022-04-21 /pmc/articles/PMC9102335/ /pubmed/35566440 http://dx.doi.org/10.3390/jcm11092315 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Courtenay, Lloyd A.
González-Aguilera, Diego
Lagüela, Susana
Pozo, Susana Del
Ruiz, Camilo
Barbero-García, Inés
Román-Curto, Concepción
Cañueto, Javier
Santos-Durán, Carlos
Cardeñoso-Álvarez, María Esther
Roncero-Riesco, Mónica
Hernández-López, David
Guerrero-Sevilla, Diego
Rodríguez-Gonzalvez, Pablo
Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
title Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
title_full Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
title_fullStr Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
title_full_unstemmed Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
title_short Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
title_sort deep convolutional neural support vector machines for the classification of basal cell carcinoma hyperspectral signatures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102335/
https://www.ncbi.nlm.nih.gov/pubmed/35566440
http://dx.doi.org/10.3390/jcm11092315
work_keys_str_mv AT courtenaylloyda deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT gonzalezaguileradiego deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT laguelasusana deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT pozosusanadel deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT ruizcamilo deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT barberogarciaines deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT romancurtoconcepcion deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT canuetojavier deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT santosdurancarlos deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT cardenosoalvarezmariaesther deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT ronceroriescomonica deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT hernandezlopezdavid deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT guerrerosevilladiego deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures
AT rodriguezgonzalvezpablo deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures