Cargando…
Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
Non-melanoma skin cancer, and basal cell carcinoma in particular, is one of the most common types of cancer. Although this type of malignancy has lower metastatic rates than other types of skin cancer, its locally destructive nature and the advantages of its timely treatment make early detection vit...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102335/ https://www.ncbi.nlm.nih.gov/pubmed/35566440 http://dx.doi.org/10.3390/jcm11092315 |
_version_ | 1784707304193523712 |
---|---|
author | Courtenay, Lloyd A. González-Aguilera, Diego Lagüela, Susana Pozo, Susana Del Ruiz, Camilo Barbero-García, Inés Román-Curto, Concepción Cañueto, Javier Santos-Durán, Carlos Cardeñoso-Álvarez, María Esther Roncero-Riesco, Mónica Hernández-López, David Guerrero-Sevilla, Diego Rodríguez-Gonzalvez, Pablo |
author_facet | Courtenay, Lloyd A. González-Aguilera, Diego Lagüela, Susana Pozo, Susana Del Ruiz, Camilo Barbero-García, Inés Román-Curto, Concepción Cañueto, Javier Santos-Durán, Carlos Cardeñoso-Álvarez, María Esther Roncero-Riesco, Mónica Hernández-López, David Guerrero-Sevilla, Diego Rodríguez-Gonzalvez, Pablo |
author_sort | Courtenay, Lloyd A. |
collection | PubMed |
description | Non-melanoma skin cancer, and basal cell carcinoma in particular, is one of the most common types of cancer. Although this type of malignancy has lower metastatic rates than other types of skin cancer, its locally destructive nature and the advantages of its timely treatment make early detection vital. The combination of multispectral imaging and artificial intelligence has arisen as a powerful tool for the detection and classification of skin cancer in a non-invasive manner. The present study uses hyperspectral images to discern between healthy and basal cell carcinoma hyperspectral signatures. Upon the combined use of convolutional neural networks, with a final support vector machine activation layer, the present study reaches up to 90% accuracy, with an area under the receiver operating characteristic curve being calculated at 0.9 as well. While the results are promising, future research should build upon a dataset with a larger number of patients. |
format | Online Article Text |
id | pubmed-9102335 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91023352022-05-14 Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures Courtenay, Lloyd A. González-Aguilera, Diego Lagüela, Susana Pozo, Susana Del Ruiz, Camilo Barbero-García, Inés Román-Curto, Concepción Cañueto, Javier Santos-Durán, Carlos Cardeñoso-Álvarez, María Esther Roncero-Riesco, Mónica Hernández-López, David Guerrero-Sevilla, Diego Rodríguez-Gonzalvez, Pablo J Clin Med Article Non-melanoma skin cancer, and basal cell carcinoma in particular, is one of the most common types of cancer. Although this type of malignancy has lower metastatic rates than other types of skin cancer, its locally destructive nature and the advantages of its timely treatment make early detection vital. The combination of multispectral imaging and artificial intelligence has arisen as a powerful tool for the detection and classification of skin cancer in a non-invasive manner. The present study uses hyperspectral images to discern between healthy and basal cell carcinoma hyperspectral signatures. Upon the combined use of convolutional neural networks, with a final support vector machine activation layer, the present study reaches up to 90% accuracy, with an area under the receiver operating characteristic curve being calculated at 0.9 as well. While the results are promising, future research should build upon a dataset with a larger number of patients. MDPI 2022-04-21 /pmc/articles/PMC9102335/ /pubmed/35566440 http://dx.doi.org/10.3390/jcm11092315 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Courtenay, Lloyd A. González-Aguilera, Diego Lagüela, Susana Pozo, Susana Del Ruiz, Camilo Barbero-García, Inés Román-Curto, Concepción Cañueto, Javier Santos-Durán, Carlos Cardeñoso-Álvarez, María Esther Roncero-Riesco, Mónica Hernández-López, David Guerrero-Sevilla, Diego Rodríguez-Gonzalvez, Pablo Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures |
title | Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures |
title_full | Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures |
title_fullStr | Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures |
title_full_unstemmed | Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures |
title_short | Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures |
title_sort | deep convolutional neural support vector machines for the classification of basal cell carcinoma hyperspectral signatures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102335/ https://www.ncbi.nlm.nih.gov/pubmed/35566440 http://dx.doi.org/10.3390/jcm11092315 |
work_keys_str_mv | AT courtenaylloyda deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT gonzalezaguileradiego deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT laguelasusana deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT pozosusanadel deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT ruizcamilo deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT barberogarciaines deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT romancurtoconcepcion deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT canuetojavier deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT santosdurancarlos deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT cardenosoalvarezmariaesther deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT ronceroriescomonica deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT hernandezlopezdavid deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT guerrerosevilladiego deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures AT rodriguezgonzalvezpablo deepconvolutionalneuralsupportvectormachinesfortheclassificationofbasalcellcarcinomahyperspectralsignatures |