Cargando…
The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn
The sacred lotus (Nelumbo nucifera Gaertn.) can maintain a stable floral chamber temperature when blooming, despite ambient temperature fluctuations; however, the long non-coding RNAs (lncRNAs) involved in floral thermogenesis remain unclear. In the present study, we obtain comprehensive lncRNAs exp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102460/ https://www.ncbi.nlm.nih.gov/pubmed/35563291 http://dx.doi.org/10.3390/ijms23094901 |
_version_ | 1784707334020268032 |
---|---|
author | Jin, Jing Zou, Yu Wang, Ying Sun, Yueyang Peng, Jing Ding, Yi |
author_facet | Jin, Jing Zou, Yu Wang, Ying Sun, Yueyang Peng, Jing Ding, Yi |
author_sort | Jin, Jing |
collection | PubMed |
description | The sacred lotus (Nelumbo nucifera Gaertn.) can maintain a stable floral chamber temperature when blooming, despite ambient temperature fluctuations; however, the long non-coding RNAs (lncRNAs) involved in floral thermogenesis remain unclear. In the present study, we obtain comprehensive lncRNAs expression profiles from receptacles at five developmental stages by strand-specific RNA sequencing to reveal the lncRNAs regulatory mechanism of the floral thermogenesis of N. nucifera. A total of 22,693 transcripts were identified as lncRNAs, of which approximately 44.78% had stage-specific expression patterns. Subsequently, we identified 2579 differential expressed lncRNAs (DELs) regulating 2367 protein-coding genes mainly involved in receptacle development and reproductive process. Then, lncRNAs with floral thermogenesis identified by weighted gene co-expression network analysis (WGCNA) were mainly related to sulfur metabolism and mitochondrial electron transport chains. Meanwhile, 70 lncRNAs were predicted to act as endogenous target mimics (eTMs) for 29 miRNAs and participate in the regulation of 16 floral thermogenesis-related genes. Our dual luciferase reporter assays indicated that lncRNA LTCONS_00068702 acted as eTMs for miR164a_4 to regulate the expression of TrxL2 gene. These results deepen our understanding of the regulation mechanism of floral thermogenesis by lncRNAs and accumulate data for further research. |
format | Online Article Text |
id | pubmed-9102460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91024602022-05-14 The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn Jin, Jing Zou, Yu Wang, Ying Sun, Yueyang Peng, Jing Ding, Yi Int J Mol Sci Article The sacred lotus (Nelumbo nucifera Gaertn.) can maintain a stable floral chamber temperature when blooming, despite ambient temperature fluctuations; however, the long non-coding RNAs (lncRNAs) involved in floral thermogenesis remain unclear. In the present study, we obtain comprehensive lncRNAs expression profiles from receptacles at five developmental stages by strand-specific RNA sequencing to reveal the lncRNAs regulatory mechanism of the floral thermogenesis of N. nucifera. A total of 22,693 transcripts were identified as lncRNAs, of which approximately 44.78% had stage-specific expression patterns. Subsequently, we identified 2579 differential expressed lncRNAs (DELs) regulating 2367 protein-coding genes mainly involved in receptacle development and reproductive process. Then, lncRNAs with floral thermogenesis identified by weighted gene co-expression network analysis (WGCNA) were mainly related to sulfur metabolism and mitochondrial electron transport chains. Meanwhile, 70 lncRNAs were predicted to act as endogenous target mimics (eTMs) for 29 miRNAs and participate in the regulation of 16 floral thermogenesis-related genes. Our dual luciferase reporter assays indicated that lncRNA LTCONS_00068702 acted as eTMs for miR164a_4 to regulate the expression of TrxL2 gene. These results deepen our understanding of the regulation mechanism of floral thermogenesis by lncRNAs and accumulate data for further research. MDPI 2022-04-28 /pmc/articles/PMC9102460/ /pubmed/35563291 http://dx.doi.org/10.3390/ijms23094901 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jin, Jing Zou, Yu Wang, Ying Sun, Yueyang Peng, Jing Ding, Yi The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn |
title | The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn |
title_full | The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn |
title_fullStr | The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn |
title_full_unstemmed | The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn |
title_short | The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn |
title_sort | genome-wide identification of long non-coding rnas involved in floral thermogenesis in nelumbo nucifera gaertn |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102460/ https://www.ncbi.nlm.nih.gov/pubmed/35563291 http://dx.doi.org/10.3390/ijms23094901 |
work_keys_str_mv | AT jinjing thegenomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT zouyu thegenomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT wangying thegenomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT sunyueyang thegenomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT pengjing thegenomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT dingyi thegenomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT jinjing genomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT zouyu genomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT wangying genomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT sunyueyang genomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT pengjing genomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn AT dingyi genomewideidentificationoflongnoncodingrnasinvolvedinfloralthermogenesisinnelumbonuciferagaertn |