Cargando…
Unsupervised Learning Applied to the Stratification of Preterm Birth Risk in Brazil with Socioeconomic Data
Preterm birth (PTB) is a phenomenon that brings risks and challenges for the survival of the newborn child. Despite many advances in research, not all the causes of PTB are already clear. It is understood that PTB risk is multi-factorial and can also be associated with socioeconomic factors. Thereby...
Autores principales: | Lopes, Márcio L. B., Barbosa, Raquel de M., Fernandes, Marcelo A. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102534/ https://www.ncbi.nlm.nih.gov/pubmed/35564992 http://dx.doi.org/10.3390/ijerph19095596 |
Ejemplares similares
-
Data-driven risk stratification for preterm birth in Brazil: a population-based study to develop of a machine learning risk assessment approach
por: Rocha, Thiago Augusto Hernandes, et al.
Publicado: (2021) -
Recurrent preterm birth: data from the study “Birth in Brazil”
por: Dias, Barbara Almeida Soares, et al.
Publicado: (2022) -
Unsupervised data-driven stratification of mentalizing heterogeneity in autism
por: Lombardo, Michael V., et al.
Publicado: (2016) -
Impact of socioeconomic factors and health determinants on preterm birth in Brazil: a register-based study
por: de Andrade, Luciano, et al.
Publicado: (2022) -
Association between preterm births and socioeconomic development: analysis of national data
por: Montemor, Marina Sanches, et al.
Publicado: (2022)