Cargando…
Predictive Modeling of Compression Strength of Waste PET/SCM Blended Cementitious Grout Using Gene Expression Programming
The central aim of this study is to evaluate the effect of polyethylene terephthalate (PET) alongside two supplementary cementitious materials (SCMs)—i.e., fly ash (FA) and silica fume (SF)—on the 28-day compressive strength (CS(28d)) of cementitious grouts by using. For the gene expression programm...
Autores principales: | Khan, Kaffayatullah, Jalal, Fazal E., Iqbal, Mudassir, Khan, Muhammad Imran, Amin, Muhammad Nasir, Al-Faiad, Majdi Adel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102582/ https://www.ncbi.nlm.nih.gov/pubmed/35591409 http://dx.doi.org/10.3390/ma15093077 |
Ejemplares similares
-
Modelling Compression Strength of Waste PET and SCM Blended Cementitious Grout Using Hybrid of LSSVM Models
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Model
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Effect of Fineness of Basaltic Volcanic Ash on Pozzolanic Reactivity, ASR Expansion and Drying Shrinkage of Blended Cement Mortars
por: Khan, Kaffayatullah, et al.
Publicado: (2019) -
Prediction of Rapid Chloride Penetration Resistance to Assess the Influence of Affecting Variables on Metakaolin-Based Concrete Using Gene Expression Programming
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete
por: Khan, Kaffayatullah, et al.
Publicado: (2022)